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PREFACE

Working through a solution to a research problem is a stimulating process. The
focus of this book is learning statistics while progressing through the steps of the
hypothesis-testing process from hypothesis to results. The hypothesis-testing
process is the most commonly used tool in science and entails following a logical
sequence of actions, judgments, decisions, and interpretations as statistics are
applied to research problems. Statistics emerged as a discipline with the purpose
of developing and applying mathematical theory and scientific operations to
enhance human understanding of phenomena experienced in life. For example,
William Gossett developed the t-statistic while working at the Guinness Brewery
in the late 1800s. He worked to explain the factors that contribute to Guinness
beer remaining suitable for drinking and what fertilizers produce the best yield
of barley used in brewing. Analysis of variance is the most widely used family of
statistics in the world, and Sir Ronald A. Fisher developed the procedure in 1921
while researching the factors contributing to better yields of wheat and potatoes.

The research problems used in the book reflect statistical applications related to
interesting and important topics. For example, research problems for students
to work through include findings on the efficacy of using cognitive-behavioral
therapy to treat depression among adolescents and evaluating if support partners
added to weight loss treatment can improve weight loss among persons who are
overweight. It is hoped that students will find the problems that they work through
to be interesting and relevant to their field of study. The research problems pre-
sented are consistent with findings in the field.

The format for each chapter on amajor statistic is to cover the research problem
by taking the student through identifying research questions and hypotheses;
identifying, classifying, and operationally defining the study variables; choosing
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appropriate research designs; conducting power analysis; choosing an appropriate
statistic for the problem; using a data set; conducting data screening and analyses
(IBM SPSS); interpreting the statistics; and writing the results related to the
problem.

It is the intent of the authors to provide a user-friendly guide to students to
understand and apply procedural steps in completing quantitative studies. Stu-
dents will know how to plan research and conduct statistical analyses using
several common statistical and research designs after completion of the book. The
quantitative methodological tools learned by students can actually be applied to
their own research with less oversight by faculty.

Students will develop competencies in using IBM SPSS for statistical analyses.
Computer-generated statistical analysis is the primary method used by quantitative
researchers. Students will have the opportunity to also calculate statistics by hand
for a fuller understanding of mathematics used in computations.

Moreover, the curriculum includes having students analyze research articles
in psychology using a research analysis and interpretation guide. These learning
experiences allow students to enhance their understanding of consuming research
using the information they have learned about statistical and research methods.
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Chapter 1

INTRODUCTION

AND OVERVIEW

LEARNING OBJECTIVES

� Understand the purpose of the book and the structure of
the book.

� Review independent, dependent, and extraneous variables
and their scales of measurement.

� Review measures of central tendency and variability.

� Review visual representations of data, including the normal
distribution.

� Review descriptive and inferential statistical applications of
the normal distribution.
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The purpose of this book is to provide a hands-on approach for
students to understand and apply procedural steps in completing
quantitative studies. The book emphasizes a step-by-step guide using

research examples for students to move through the hypothesis-testing process
for commonly used statistical procedures and research methods. Statistical
and research designs are integrated as they are applied to the examples.
The structure of each chapter covers the following nine quantitative research
procedural steps:

1. A description of a research problem, taking the student through identifying
research questions and hypotheses.

2. A method of identifying, classifying, and operationally defining the study
variables.

3. A discussion of appropriate research designs.

4. A procedure for conducting an a priori power analysis.

5. A discussion of choosing an appropriate statistic for the problem.

6. A statistical analysis of a data set.

7. A process for conducting data screening and analyses (IBM SPSS) to test null
hypotheses.

8. A discussion of interpretation of the statistics.

9. A method of writing the results related to the problem.

The underlying philosophy of the book is to view the quantitative research
process from a more holistic and sequential perspective. Concepts are discussed as
they are applied during the procedural steps. It is hoped that after completion of
the book readers will be better able to plan research and conduct statistical
analyses using several commonly used statistical and research designs. The
quantitative methodological tools learned by students can actually be applied to
their own research, hopefully with less oversight by faculty.

The use of statistical software is an essential tool of researchers. Psychological,
educational, social, and behavioral areas of research typically have multifactor
or multivariate explanations. Statistical software provides a researcher with
sophisticated techniques to analyze the effects and relationships among
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many independent variables (factors) and dependent variables (variates) in vari-
ous combinations all at once and instantly. We will use IBM SPSS statistical
software, which has been developed over many decades and is one of the most
widely used statistics programs in the world.

Statistical techniques may have more meaning, understandability, and rele-
vance when learned within the context of research. One needs to have an
understanding of statistical analyses to consume and construct professional
research competently. Knowledge of quantitative research methods is especially
important today because of the emphasis on evidence-based practice in psy-
chology (EBPP) to improve clinical work with clients. EBPP refers to using the
best available research with clinical expertise in the context of patient char-
acteristics, culture, and preferences (American Psychological Association, 2006).

Ideally, the goal is to help a student achieve self-efficacy in understanding,
planning, and conducting actual independent research. Information and skills
grow, leading to advanced understanding. We next present a review of founda-
tional information related to research and statistics that will be useful to review
prior to completing the chapters that follow.

REVIEW OF FOUNDATIONAL RESEARCH CONCEPTS

A review of foundational concepts related to research and statistics is presented
next. Quantitative research involves the interplay among variables after they have
been operationalized, allowing a researcher to measure study outcomes. Essential
statistical methods used to assess scores of variables include central tendency,
variability, and the characteristics of the normal distribution.

Independent, Dependent, and Extraneous Variables

At the core of quantitative research is studying and measuring how variables
change. Kerlinger and Pedhazur (1973) stated, “It can be asserted that all the
scientist has to work with is variance. If variables do not vary, if they do not have
variance, the scientist cannot do his work” (p. 3). Even the father of modern
statistics, Sir Ronald Fisher (1973), said, “Yet, from the modern point of view,
the study of the causes of variation of any variable phenomenon, from the yield of
wheat to the intellect of man, should be begun by the examination and mea-
surement of the variation which presents itself ” (p. 3).
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An independent variable (IV) in a study is the presumed cause variable. In
experimental research, the IV is designed and employed to influence some other
variable. It is an antecedent condition to an observed resultant behavior. Changes
in the independent variable produce changes in the dependent variable.

All variables need to be able to vary. Kerlinger and Lee (2000) identified two
types of independent variables: active and attribute. An active independent variable
is one that is manipulated by the researcher. For example, a researcher designs a
study with an IV that has a researcher-specified treatment condition compared to
a no-treatment control condition. Other terms used for an active IV are stimulus
variable, treatment variable, experimental variable, intervention variable, and
X variable.

A second type of IV is called an attribute independent variable, which is not
manipulated but is ready-made or has preexisting values such as gender, age, or
ethnocultural grouping.Other terms used are organismic or personological variables.

The terms classification variable and categorical variable are often used as an IV
label. They can be used as either active or attribute types. For example, a
manipulated IV that has a treatment condition and a control condition could be
called a classification variable. Also, an attribute variable such as gender (male or
female) may be referred to as a classification or categorical variable.

A dependent variable (DV) is the presumed resulting outcome in research. It is
usually observed and measured in response to an IV. We look for changes in a DV
caused by an IV. A DV is also referred to as a response variable or a Y variable.

An extraneous variable (EV) is an unwanted and contaminating variable. An
EV acts on a dependent variable like an independent variable does but in a
confounding way that confuses an understanding of how the IV is changing the
DV. An extraneous variable is undesired noise in a research study. A researcher
wants to control an extraneous variable to neutralize its effects.

Variables need to be assigned meaning by specifying activities or operations
necessary to measure the variable, which is known as an operational definition
(OD). A comprehensive operational definition entails all of the activities and
operations that define the variable. For example, an active IV psychotherapy
approach might have two conditions (Gestalt therapy and control condition). We
can say there are two operational definitions for the IV psychotherapy approach
for the sake of brevity. However, each condition has a detailed, comprehensive
operational definition that is clearly and fully specified. A brief operational def-
inition of a dependent variable of depressive symptomatology may be scores on
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the Beck Depression Inventory (BDI). However, the comprehensive OD would
detail key psychometric research used in validating the BDI.

In correlations research, an independent variable is often called a predictor
variable (PV), and a dependent variable is called a criterion variable (CV).

Scales of Measurement of Variables

Variables can be assigned scales of measurement. A variable does not have an
absolute scale of measurement. The scale of measurement of a variable can change
depending on how the variable is being used in different studies and even within
the same study. Therefore, there is a research contextual consideration that
helps determine the scale of measurement of a variable. The process of thinking
through the connection between scales of measurement and variables helps
the researcher more clearly see how variables can be measured in a study. Also, the
scales of measurement assigned to a variable can be useful in selecting appropriate
statistics to use in research.

There are two general classifications of scales of measurement, each having
two subcategories; they are discrete scale (nominal and ordinal) and continuous
scale (interval and ratio).

A variable using a discrete-nominal scale of measurement has mutually
exclusive categories. For example, gender has mutually exclusive categories of
male or female, and political affiliation has categories of Republicans, Democrats,
or independents. A discrete-ordinal scale of measurement variable has ordering
along some continuum. It is rank scaled. For example, the order (first, second,
third, etc.) in which runners complete a race reflects an ordinal scale.

A continuous-interval scale of measurement variable has numerical distances
on a scale that are considered approximately equal numerical distances of the
attribute being measured. There is no true zero point on the scale; it is considered
arbitrary. For example, scores on the Wechsler IQ test are considered interval
scaled, and there is an arbitrary zero, but the test does not measure a total absence
(true zero) of intelligence. A continuous-ratio scale of measurement variable has a
true zero point, and the numerical distances on the scale are equal to the attribute
being measured. Weight is an example of a ratio-scaled variable. A zero number of
pounds is meaningful, and 100 pounds is one-third as heavy as 300 pounds.
Other examples of ratio-scaled variables include height, length, and time.

There are times when ordinal-scaled variables such as Likert-type scales are
statistically analyzed as a continuous-interval variable (Tabachnick & Fidell,
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2007). Howell (2010) states, “We do our best to ensure that our measures relate
as closely as possible to what we want to measure, but our results are ultimately
only the numbers we obtain and our faith in the relationship between those
numbers and the underlying objects or events” (p. 8). A more important gauge of
understanding the meaning of scores on dependent variables in a study has to do
with their distributions. Measures of central tendency and variability of scores of
distributions are discussed next.

REVIEW OF FOUNDATIONAL STATISTICAL
INFORMATION

One of the most important tasks of quantitative researchers is to understand the
data they are working with. Researchers need to assess their data for issues
including dishonest data, cases with atypical scores, and noncompliance with
appropriate use of statistical requirements. Also, it is important for researchers to
understand the uniqueness of their data sets by examining typical scores, vari-
ability among scores, and characteristics and shapes of distributions of scores
related to variables in a data set.

Measures of Central Tendency

Measures of central tendency are values that represent typical scores in a distri-
bution or set of scores. We will be using the data in Table 1.1 to demonstrate
how to calculate the three most common measures of central tendency: mode,
median, and mean.

TABLE 1.1 Values Used to Illustrate Measures of Central
Tendency and Variability

XðN ¼ 6Þ X2 ðX � XÞ ðX � XÞ2

48 2,304 48249¼�1 1

43 1,849 43249¼�6 36

52 2,704 52249¼3 9

50 2,500 50249¼ 1 1

48 2,304 48249¼�1 1

53 2,809 53249¼4 16

ΣX ¼ 294 ΣX2 ¼ 14,470 ΣðX � XÞ ¼ 0 ΣðX � XÞ2 ¼ 64
ðΣXÞ2 ¼ ð294Þ2 ¼ 86,436
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Mode (Mo)

The mode (Mo) is the score that occurs most often in a set of scores. The mode is
the highest point on a graph such as a frequency distribution or a histogram and
is referred to as unimodal. If there are two scores in a sample that are equally the
most frequently occurring, then the distribution is called bimodal. The column
headed by X (individual score) and N¼ 6 represents six individual scores in the
distribution of scores example. The only score that is represented more than once
is 48. Thus, the Mo¼ 48 and it is a unimodal distribution.

Median (Mdn)

The median (Mdn ) is a value in the set of which 50 percent of cases fall below and
50 percent above. If the number of a set of ordered scores from low to high is
odd, then the score that has half of the other scores below it and half above
it is the median. For example, in the set of numbers 4, 5, 7, 8, and 9, the number
7 is the median.

In the set in Table 1.1, the number of scores is even. The six scores ordered
are 43, 48, 48, 50, 52, 53. To obtain the median requires calculating the average
value between the score at N/2 and the score at (N/2)1 1. So, N/2¼ 6/2¼ 3
(i.e., the third score) and (N/2)1 1¼ 31 1¼ 4 (i.e., the fourth score). The third
score in the set is 48 and the fourth score is 50. The average of 48 and 50 is
(481 50)/2¼ 98/2¼ 49. So, the median of the data set in Table 1.1 is 49.

Mean (X or M)

The mean (X or M ) is the sum of individual scores (ΣX ) in a data set divided by
the number of scores (N ). The mean is typically a more precise measure of central
tendency than the mode or the median, because the specific value of each score is
used to calculate the mean. Also, the mean has the properties of being contin-
uously scaled as an interval or a ratio. The mean is more stable than the mode or
median when it is used as a sample measure of central tendency drawn from a
population. On the downside, when a sample has extreme scores (skewed), the
mean is drawn way from the clustered scores toward the extreme scores. In these
situations, the mean may not be the most typical score in a data set. For example,
an analysis of salaries of company employees that includes the high salaries of
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executives can produce a company employee mean salary that the vast majority of
employees are well below. The median might be a better indication of the typical
employee salary in the company. Presented next is the calculation of the mean of
our sample data in Table 1.1.

X ¼ ΣX
N

¼ 294
6

X ¼ 49:00

where

ΣX¼ sum of the individual scores

N¼ number of scores

Measures of Variability (Dispersion) of Scores

Foundational to quantitative research is the study of the measures of variability
(dispersion) of scores in a sample data set. Here we review common measures of
range, mean deviation scores, sum of squares, variance, and standard deviation
using the data set from Table 1.1.

The range of scores in a data set is simply the difference between the highest
and lowest scores (scorehighest2 scorelowest). In the example data in Table 1.1, the
highest score is 53 and the lowest score is 43; 532 43¼ 10, which is the range.

A measure of variability that is used as a component in many statistical
formulas that are used in fundamental statistics is called the total sum of squares,
which is the sum of squared differences of all scores in the data set from their

overall mean, ΣðX � X Þ2.

Variance of the Sample (s2)

The variance of the sample (s2) is the total sum of squares divided by the number of

scores, ΣðX � X Þ2
N . The symbol of the variance of the population is sigma squared

(σ2). If all the cases are the same value, the variance will equal zero. The larger the
variance value, the more the values are spread out in the distribution.
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We will be using N2 1 as the denominator rather than N since the primary
focus of this book is to use samples to estimate populations. The use of N2 1 is a
more accurate estimate (unbiased estimate) of a population parameter. We do not
know what the population mean is, so the sample values have less variability.
We use the sample mean instead and with N2 1 as a compensation for not
knowing the population mean. This use of N2 1 also is referred to as degrees of
freedom (df ), a practice used in most statistical analyses. As Hays (1963) states,
“Thus we say that there are N2 1 degrees of freedom for a sample variance,
reflecting the fact that only N2 1 deviations are ‘free’ to be any number, but that
given these free values, the last deviation is completely determined” (p. 311). If the
goal of studying a sample is to describe the sample and not to estimate a popu-
lation, then N may be used and not N2 1. The variance is calculated next using
the data from Table 1.1.

s2 ¼ ΣðX � X Þ2
N � 1

¼ 64
5

s2 ¼ 12:80

Standard Deviation of the Sample (s)

The standard deviation of the sample (s) is the square root of the variance. The
symbol for the standard deviation of the population is σ. The standard deviation
is a more useful explanatory measure of variability when compared to the variance
because it is in the same units as the original data. For example, when presenting
the mean and the standard deviation together, they are both in the same metric.

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΣðX � X Þ2
N � 1

s

¼
ffiffiffiffiffi
64
5

s

¼ ffiffiffiffiffiffiffiffiffiffiffi
12:80

p

s ¼ 3:58
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Coefficient of Variation (C)

The coefficient of variation (C) is a ratio of the standard deviation divided by the
mean. The coefficient of variation can be used to compare the variability of
different variables as well as the means of the variables. Using the s¼ 3.58 and
X ¼ 49 from the data in Table 1.1, the coefficient of variation is calculated here
as a ratio and as a percentage:

C ¼ s
X

¼ 3:58
49

C ¼ :073
C 3 100 ¼ 7:30%

The coefficient of variation for the DV is 0.073, and converted to a percentage it is
7.30 percent. The standard deviation is approximately 7.30 percent of the mean.

Visual Representations of a Data Set

There aremany charts available to assist researchers inmore fully understanding their
data. Illustrations of a bar chart, histogram, and normal Q-Q plot are presented.

A data set of scores on a dependent variable of depressive symptoms is pre-
sented in a frequency distribution in Table 1.2. There are scores from 145 par-
ticipants and there are no missing data. Hence, the data set has complete scores
and the values in the Percent and Valid Percent columns are the same. The values
in the first column are the scores representing depressive symptoms. For example,
the score of 17 has a frequency of nine scores (9/145¼ 6.2%) in the data set. The
value 17 represents a cumulative percentage of 49.7 percent, which is the closest
value to the 50th percentile rank of the distribution of scores.

This data can be shown as a bar chart (see Figure 1.1). The horizontal line of
the bar chart is called the abscissa or x-axis, and in this example each number
represents a value for depressive symptoms in the data set. The vertical line, also
called the ordinate or y-axis, represents the frequency of scores by participants at
each value for depressive symptoms in the data set. For example, you can see the
most frequently scored value (16) and the least frequently scored values (5, 7, 9,
35) by participants in the sample.
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TABLE 1.2 Frequency Distribution of Scores of Depressive Symptoms

Statistics

DV

N Valid 145

Missing 0

DV

Frequency Percent Valid Percent Cumulative Percent

Valid 5 1 0.7 0.7 0.7

7 1 0.7 0.7 1.4

8 4 2.8 2.8 4.1

9 1 0.7 0.7 4.8

10 7 4.8 4.8 9.7

11 5 3.4 3.4 13.1

12 11 7.6 7.6 20.7

13 6 4.1 4.1 24.8

14 7 4.8 4.8 29.7

15 5 3.4 3.4 33.1

16 15 10.3 10.3 43.4

17 9 6.2 6.2 49.7

18 13 9.0 9.0 58.6

19 2 1.4 1.4 60.0

20 7 4.8 4.8 64.8

21 6 4.1 4.1 69.0

22 4 2.8 2.8 71.7

23 6 4.1 4.1 75.9

24 3 2.1 2.1 77.9

25 4 2.8 2.8 80.7

26 4 2.8 2.8 83.4

27 4 2.8 2.8 86.2

28 3 2.1 2.1 88.3

29 5 3.4 3.4 91.7

30 2 1.4 1.4 93.1

32 7 4.8 4.8 97.9

33 2 1.4 1.4 99.3

35 1 0.7 0.7 100.0

Total 145 100.0 100.0
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A histogram of the data set is presented in Figure 1.2. In a histogram the x-axis
depicts intervals of scores and the y-axis still represents frequencies of scores.
However, the scores on the x-axis are reported as falling within intervals. In this
graph, the intervals are 10-point intervals, so all scores in the data set between 0
and 9 are represented by bars in this interval. Using Table 1.1 for assistance,
the scores by frequencies in the data set interval 0�9 are score 5 (frequency¼ 1
score), score 7 (frequency¼ 1 score), score 8 (frequency¼ 4 scores), and score 9
(frequency¼ 1 score). Therefore, a total of seven scores in the data set are within
the range of 0�9. The total numbers of scores within the intervals are interval
0�9 (seven scores), interval 10�19 (80 scores), interval 20�29 (46 scores), and
interval 30�39 (12 scores).

A histogram of a data set provides the researcher with a quick visual
inspection of the shape of the distribution of scores. For example, we can see

FIGURE 1.1 Bar Chart of Scores of Depressive Symptoms
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that scores cluster around the mean and there is reasonable symmetry (balance) of
scores on either side of the mean. Also, there appear to be no extreme scores to
the negative side (left) or the positive side (right) of the distribution.

The same histogram of the data set is presented in Figure 1.3 with a normal
curve superimposed on the graph. This provides additional information about
how well the sample distribution of scores fits a normal curve. If the data set
scores were a perfect fit to the normal curve, then the bars would fit fully within
the superimposed normal curve.

An example of a useful plot to assess normality of a data set is called a Q-Q
(quantile-quantile) plot (see Figure 1.4). The Q-Q plot is derived by first sub-
tracting each observed score from the group mean. Then, these residuals

FIGURE 1.2 Histogram of Scores of Depressive Symptoms
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(differences) are plotted against the expected observed scores if the data are from a
normal distribution (Norusis, 2003). Normality exists in the sample distribution of
scores if the points on the Q-Q plot fall on or near the straight line. In this example,
it appears that the data set shows reasonable normality among the scores.

THE NORMAL DISTRIBUTION

The normal distribution (bell curve) is themost studied andwidely used curve in the
field of probability (Tabak, 2005). Many measurements of human activities have
been shown to be normally distributed. A great deal has been discovered about the
normal curve over the past 300 years since Abraham de Moivre formulated a

FIGURE 1.3 Normal Curve Superimposed on Histogram of Scores of
Depressive Symptoms
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mathematical proof of the normal distribution. The normal distribution has useful
properties. If two random variables have a normal distribution, their sum has a
normal distribution. In general, all kinds of sums and differences of normal variables
have normal distributions. So, many statistics derived from normal variates are
themselves normally “distributed” (Salsburg, 2001). The normal distribution has
two parameters (constants): the population mean (μ) and the population standard
deviation (σ). There are many different normal curves that are based on these two
parameters (Snedecor & Cochran, 1967).

Characteristics of the Normal Distribution

The normal distribution has a peak (highest point on the curve), tails (the extreme
left and right points of the curve) and shoulders (the left and right sections of
the curve between the peak and the tails) (see Figure 1.5). The right side of the

FIGURE 1.4 Q-Q Plot of Scores of Depressive Symptoms
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FIGURE 1.5 The Normal Distribution and Standardized Scores
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curve is also called the positive side of the curve, and the left side is referred to as
the negative side.

The base of the curve is called the abscissa (horizontal axis, x-axis) and sec-
tions off measurements in standard deviation units of constant percentages such
as percentile ranks, z-scores, and T-scores. The height of the normal curve is
called the ordinate (vertical axis, y-axis), which represents the percentage of cases
under portions of the normal curve.

The area within the normal curve is referred to as a density of 100 percent or
a unit of 1.0 for using probability. While the tails on both sides of the normal
curve extend to infinity (N) and never touch the abscissa, 991 percent of
the curve falls within 63 standard deviations of the curve. Most of the area is
in the middle of the curve at the highest point where 68.26 percent is between
61 standard deviation of the normal curve. The percentage of the area under the
curve decreases as the shape of the curve moves toward the tails.

The normal distribution is symmetrical, and each half of the curve is exactly
50 percent density. The mean, median, and mode of the normal curve are the
same, as represented by 0 at the midpoint of the curve. Illustrations of using
the normal curve in descriptive statistical analyses are discussed next.

Descriptive Statistical Applications of the Normal Distribution

We will assess an individual’s measured IQ score compared to the IQ scores of
others who are part of a normative sample of individuals whose scores reflect a
normal curve. Bob has a measured IQ score on a standardized IQ test that is 80.
The population mean of the normative sample is μ¼ 100, and the standard
deviation is σ¼ 15.

A z-score can be used with this information to compare Bob’s score with the
normative sample. A z-score is a standard score that shows the relative standing of
a raw score in a normal distribution. The formula for a z-score is z¼X2 μ/σ, where
X is an individual score, μ is the population mean, and σ is the population standard
deviation. The z-score of Bob’s individual IQ score is z¼ 802 100/15¼�1.33.
One can visualize where z¼�1.33 is placed on the normal curve in Figure 1.5.

Next we will find the percentile rank of Bob’s z-score¼�1.33 (raw score of
80). A percentile rank is the score that indicates what percentage of persons being
measured fall equal to or below the particular score. The exact percentages in the
normal curve associated with z-scores are found using an online statistics calculator.
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1. Go to www.danielsoper.com, where there are several free statistics calculators.

2. On the home website. click on Statistics Calculator. scroll down and click
on the Normal Distribution button. click on the Cumulative Area Under the
Normal Curve Calculator.

3. Type in Bob’s z-score of �1.33. click on the Calculate button. the
Cumulative area: is .09175914.

If you take .09175914 times 100 or move the decimal two places to the right,
you obtain 9.175914, which is approximately 9.18%. So a z-score¼�1.33
indicates that equal to or less than 9.18 percent of the norm group obtain an IQ
score of 80, when the mean is 100 and the standard deviation is 15. Bob’s
percentile rank is 9.18.

In another example, Jean scored 105 on the same IQ test. Jean’s z-score¼
1052 100/15¼1.33. A z-score¼1.33 is to the right of the center point mean.

1. Go to www.danielsoper.com, where there are several free statistics calculators.

2. On the home website. click on Statistics Calculator. scroll down and click
on the Normal Distribution button. click on the Cumulative Area Under the
Normal Curve Calculator.

3. Type in Jean’s z-score of .33. click on the Calculate button. the Cumu-
lative area: is .62930002.

If you take .62930002 times 100 or move the decimal place two places to
the right, you obtain 62.930002, which is approximately 62.93 percent. So a
z-score¼ .33 indicates that equal to or less than 62.93 percent of the norm group
obtain an IQ score of 105, when the mean is 100 and the standard deviation
is 15. Jean’s IQ score of 105 represents a percentile rank of 62.93.

Inferential Statistical Applications of the Normal Distribution

We just showed how the normal curve can be used in a descriptive statistical
analysis. The normal curve also plays a key role in inferential statistics, which
involves inferring information about samples to generalize to populations.
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Inferential probability statements made about populations’ characteristics
(parameters) from analysis of sample characteristics (statistics) is statistical
inference. Parameters are any measurable characteristic of a population, and
statistics are any measurable characteristic of a sample. Inferential statistics
are estimators in the sense that they estimate parameters. When a random
sample is selected from a population with the purpose to understand the
population, there is likely to be a difference between the population mean (μ)
and the sample mean (X ). The difference between a population parameter and
a sample statistic is sampling error. If you were able to select an infinite number
of sample means from a population, the mean of the sample means would
equal the population mean. The infinite number of sample means forms a
sampling distribution of the mean that is distributed as a normal curve. This is
the foundation of one of the most important theorems in statistics. The central
limit theorem says that “whatever the shape of the frequency distribution of the
original population of X ’s, the frequency distribution of X in repeated random
samples of size n tends to become normal as n increases” (Snedecor & Cochran,
1967, p. 51). Thus, all that is known about the normal distribution can be
applied to the sampling distribution of the mean, including the probability of
obtaining a mean by chance and testing hypotheses. The z-test is used to test
hypotheses when the parameters (μ and σ) are known. A sample mean can be
compared to these parameters to see if it belongs to that population. One use of
a z-test is in situations using test norms where σ and μ are identified in the
standardization process.

For example, a researcher wants to determine if a sample of adults who have a
learning disability in math would have an average full-scale (FS) IQ score that is
different from the normative sample of the Wechsler Adult Intelligence Scale�IV
(WAIS-IV). The WAIS-IV norms are: mean¼ 100 and standard deviation¼ 15.
Since the researcher is not indicating a direction as to whether the average FS IQ
score will be higher or lower than the normative sample, it is referred to as
nondirectional and we can designate the alternative hypothesis as Ha: μ 6¼ 100. The
null hypothesis is tested, and it is written as H0: μ¼ 100. The population mean
symbol (μ) is used because we are using the sample mean as an estimator of the
population mean in the hypothesis.

A random sample of 50 adults who have a learning disability in math have a
mean FS IQ score of 86 on the WAIS-IV. We want to test the null hypothesis
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that 50 adults with a learning disability in math are a random sample from
a population of adults represented by the standardized norm sample of the
WAIS-IV.

A criterion (critical value) is identified to compare to a calculated z-test sta-
tistic before calculating the z-statistic. We will use a commonly used alpha level of
α¼ .05. This is a two-tailed test since there is no specification that the outcome
will show that the sample mean is higher or lower than the norm mean. We will
therefore be using both the left (negative) and right (positive) sides of the normal
curve to find significance. In this case, if the z-statistic produces a negative value,
then we would look in the negative side of the distribution; and if a positive value
is found, then we would look in the positive side. Since we are using α¼ .05 and
the alternative hypothesis is nondirectional, creating a two-tailed test, we need to
distribute half of the alpha (.025) in each tail of the normal curve. We are going
to find a z critical value that is located on the abscissa (horizontal axis) of the
normal curve where .025 of the curve density falls beyond at either end of
the normal curve. We are going to use an online calculator to find the z critical
value at .025 in the left tail and right tail of the normal curve using the following
directions.

Go to www.danielsoper.com. click on Statistics Calculators. scroll down
and click on Normal Distribution. click on Standard Normal Disribution
z-score Calculator. beside Cumulative probability level: type 0.025.
click the Calculate! button and the answer is z-score: �1.95996398.

Rounded, the z-value is �1.96, corresponding to the α¼ .025 on the neg-
ative or left side of the curve. The other half of the α¼ .05 is on the positive or
right side of the normal curve since it is a two-tailed test. So, if you followed the
same online calculator directions but typed in .975 (12 .025), you would get a
rounded11.96 that is a positive value. Thus, the critical value that we will use to
compare to the calculated z-statistic is zcv¼61.96 (α¼ .05, two-tailed). The
formula and calculations of the z-statistic are presented next. The numerator of
the formula σ=

ffiffiffi
n

p
is the standard error of the mean that is the index reflecting the

sampling distribution of the mean.
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z-statistic ¼ X � μ
σ=

ffiffiffi
n

p

¼ 86� 100

15=
ffiffiffiffiffi
50

p

¼ �14
15=7:07

¼ �14
15=7:07

¼ �14
2:12

z-statistic ¼ �6:60

The z-statistic¼�6.60 is greater than zcv¼�1.96, so there is a significant
difference in FS IQ between the sample mean (86) of adults who have a learning
disability and the mean (100) of the normative sample. The 50 adults with a
learning disability in math are not a random sample from a population of adults
represented by the standardized norm sample of the WAIS-IV.

One-Sample t-Test (Student’s t-Test)

The z-statistic is not often used since we rarely know the population parameters.
A more commonly used statistic that evolved from the z-statistic is used more
often and is known as the one-sample t-test (Student’s t-test). The originator of
the t-test was William Gossett, who worked for the Guinness Brewing Company.
He used the pseudonym Student when he wrote the seminal scientific article titled
“The Probable Error of the Mean,” published in the 1908 issue of Biometrika
(Student, 1908). Gossett had to use the pseudonym Student since, to protect
proprietary interests, it was against company policy for employees to publish
studies about Guinness.

Gossett developed a new probability distribution called the t-distribution that
he assumed had an initial normal distribution. In large samples the t-distribution is
nearly normal, but it is less so when the sample is less than 30. The t-distribution
works well with all sample sizes as long as statistical assumptions are present. Not
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only is the t distribution useful for small samples, but the sample standard
deviation and mean can also be used to estimated population parameters.

The one sample t-statistic is very similar to the z-test except that the sample
standard deviation (s) is substituted for the known σ and the t-distribution is used
to identify probability estimates to compare to obtained statistical values.

For example, a school district wants to assess whether third graders in a
particular school perform in reading similarly to all third graders in the school
district. The average score on a reading achievement test of third graders in the
school district is 105. The sample of 25 third graders from the particular school
had an average score of X ¼ 124 and standard deviation of s¼ 13. The one-
sample t-test is used next to test the null hypothesis that H0: μ¼ 105 at α¼ .01.
The alternative hypothesis is nondirectional, Ha: μ 6¼ 105. First, we will obtain a
critical value using an online calculator to compare to the calculated one-sample t-
test. The degrees of freedom N2 1 (24) and alpha (α¼ .01) are needed to
identify the critical value.

Go to www.danielsoper.com. click on Statistics Calculators. scroll down
and click on t-Distribution. click on Student t-Value Calculator. type
in 24 beside Degrees of freedom:. click 0.01 next to Probability level:.
click on Calculate! and the answer is t-value (two-tailed): 62.79693951.

Rounding the t critical value for the two-tailed test is 2.797. Next, the one-
sample t-test is calculated.

t ¼ X � μ
s=

ffiffiffiffiffi
N

p

¼ 124� 105

13=
ffiffiffiffiffi
25

p

¼ 19
13=5

¼ 19
2:6

t ¼ 7:31

The obtained t-value¼ 7.31 is larger than the critical value¼ 2.797, so we
reject the null hypothesis ( p, .01). We conclude that 25 third graders from a
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particular school had a significantly higher average score on reading achievement
when compared to the average reading achievement score of all school district
third-grade students.

The t-distribution also is used for two commonly used statistics to compare two
means for differences, which are the dependent t-test and the independent t-test.

Dependent t-Test

A comparison is made between two sets of dependent scores when a dependent
t-test (paired-sample t-test) is used. The pairs of scores between the two sets are
linked together. A dependent t-test is used in the following four situations.

1. A comparison of the pretest and posttest scores of the same participants.

2. A comparison of the scores of one group of participants with another group
of participants who are matched on one or more extraneous variables.

3. A comparison of the scores of the same group of participants under two
different conditions.

4. A comparison of the scores of naturally occurring correlated pairs, like twins.

We will illustrate the use of the dependent t-test related to research that
compares pretest scores with posttest scores on self-compassion from the same
16 participants who received a mindfulness treatment program. Self-compassion
is measured by the Self-Compassion Scale (SCS; Neff, 2003), and high scores
reflect higher self-compassion. The alternative hypothesis is Ha: μpreSCS 6¼
μpostSCS and the null hypothesis to be tested is H0: μpreSCS¼ μpostSCS.

We start by obtaining a t critical value to compare to an obtained t-value
using the online calculator.

Go to www.danielsoper.com. click on Statistics Calculators. scroll down
and click on t-Distribution. click on Student t-Value Calculator. type in
15 beside Degrees of freedom:. click 0.05 next to Probability level:. click
on Calculate! and the answer is t-value (two-tailed): 62.13144955.

The rounded value is tCV¼62.131 using an α¼ .05 with 15 df (Npairs2 1,
162 1¼ 15). The scores and difference measures used for the analysis are in
Table 1.3.
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Dependent t-test ¼ Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΣD2 � ðΣDÞ2

N

N ðN � 1Þ

vuut

¼ �26:13ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15,334� ð�418Þ2

16

16ð16� 1Þ

vuut

¼ �26:13ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15,334� 10,920

240

s

¼ �26:13ffiffiffiffiffiffiffiffiffiffiffi
18:39

p

¼ �26:13
4:29

t ¼ �6:09

TABLE 1.3 Scores and Difference Measures for Dependent t Analysis

ID Number Pretest Posttest Difference (D) D2

1 65 114 �49 2,401

2 106 120 �14 196

3 45 74 �29 841

4 116 129 �13 169

5 75 105 �30 900

6 46 97 �51 2,601

7 54 95 �41 1,681

8 79 103 �24 576

9 55 109 �54 2,916

10 99 101 �2 4

11 52 94 �42 1,764

12 73 76 �3 9

13 51 77 �26 676

14 88 98 �10 100

15 76 86 �10 100

16 68 88 �20 400

Xpre ¼ 71:75 Xpost ¼ 97:88
D ¼ 71:75� 97:88
D ¼ �26:13

ΣD¼�418 ΣD2¼ 15,334

c01 19 June 2012; 13:59:30

24 � CHAPT E R 1



The calculated dependent t¼�6.09 is greater than the tCV 6 2.131, so the
null hypothesis is rejected and we conclude that there is a significant difference
between the pretest and posttest self-compassion scores. The pretest X pre ¼ 71:75

and the posttest X post ¼ 97:88. Since a high score represents higher self-compassion,
we conclude that there was a significant gain in self-compassion following the
mindfulness treatment.

Independent t-Test

The independent t-test is used to test if two sample means are significantly dif-
ferent from each other from two independent samples. This is a between group
analysis. We are testing whether the two means from independent samples
are from different populations. The sample means as estimators of the popula-
tion parameters based upon the sampling distribution of differences between
means.

An independent t-test analysis will be demonstrated comparing a randomly
assigned group of 16 participants who received a psychotherapy intervention on
their changes in thought suppression to a control group (n¼ 16) who received
the treatment later. Thought suppression is measured using the White Bear
Suppression Inventory (WBSI) (Wegner & Zanakos, 1994), and high scores
represent higher perceived thought suppression. The alternative hypothesis is Ha:
μpschotherapy 6¼ μcontrol and the null hypothesis is H0: μpsychotherapy¼ μcontrol.
The mean and variance of WBSI scores and group sizes for the psychotherapy
group of participants were X ¼ 39:75, s2¼ 95.67, n¼ 16, and for the control
group X ¼ 53:06, s2¼ 130.73, n¼ 16.

First, we obtain a t critical value.

Go to www.danielsoper.com. click on Statistics Calculators. scroll down
and click on t-Distribution. click on Student t-Value Calculator. type in
30 beside Degrees of freedom:. click 0.01 next to Probability level:. click
on Calculate! and the answer is t-value (two-tailed): 62.74999566.

The rounded value is tCV¼62.750 using an α¼ .01 with 30 df ([n12 1]1
[n22 1], [162 1]1 [162 1]¼ 30).
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Independent t-test ¼ X 1 � X 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
n1

þ s22
n2

s

¼ 39:75� 53:06ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
95:67
16

þ 130:73
16

r

¼ �13:31ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5:98þ 8:17

p

¼ �13:31
3:76

t ¼ �3:54

The calculated independent t¼�3.54 is greater than the tCV¼62.750, so
we reject the null hypothesis of no differences. The treatment group showed
significantly lower thought suppression scores than control group participants
who did not receive the treatment ( p, .01).

We used equal-sized groups in this example of an independent t-test.

A pooled variance, S2p ¼ S21 ðn1 � 1Þ þ S22 ðn2 � 1Þ
n1 þ n2 � 2 , is used if the sizes of groups are

unequal and the independent t formula becomes t ¼ X 1�X 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2p

1
n1

þ 1
n2

� �r .

SUMMARY

This chapter has presented the purpose of the book and information related to
the foundations of research and statistics. Several commonly used statistics are
covered in the book that are linked to the normal distribution, including: (1) one-
way analysis of variance, (2) repeated-measures analysis of variance, (3) factorial
analysis of variance, (4) analysis of covariance, and (5) correlation coefficient and
multiple regression analysis. Nonparametric statistics are covered later in the book
that have less distribution requirements and are referred to as distribution-free
statistics. The nonparametric statistics that are covered are Kruskal-Wallis one-
way analysis of variance, Mann-Whitney U statistic, Friedman’s rank test for k
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correlated samples, and the Wilcoxon’s matched-pairs signed-ranks test. Each
statistic is demonstrated using the hypothesis-testing process that is the subject of
the next chapter.

PROBLEM ASSIGNMENT

Review information was presented in this chapter related to measures of central
tendency, variability, visual representations of data, and the normal distribution.
Moreover, applications of descriptive and inferential statistics of the normal
distribution were illustrated. Review problems are presented on the companion
website for you to practice on. Use the examples presented in this chapter to
guide you as you complete the assignment. Your instructor will evaluate your
completed worksheet when it is finished.

KEY TERMS

abscissa

active independent variable

alpha level

alternative hypothesis

attribute independent variable

bar chart

bimodal

categorical variable

central limit theorem

classification variable

coefficient of variation (C)

continuous scale

continuous-interval scale

continuous-ratio scale

criterion variable (CV)

critical value

degrees of freedom (df)

dependent t-test

dependent variable (DV)

discrete scale

discrete-nominal scale

discrete-ordinal scale

extraneous variable (EV)

frequency distribution

histogram

independent t-test

independent variable (IV)

inferential statistics

mean (X)

mean deviation scores
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measures of central tendency

measures of variability (dispersion)

of scores

median (Mdn )

mode (Mo)

negative side

nondirectional

normal distribution

null hypothesis

one-sample t-test (Student’s t-test)

operational definition (OD)

ordinate

parameters

peak

percentile rank

positive side

predictor variable (PV)

Q-Q (quantile-quantile) plot

range

residuals

sampling distribution

of the mean

sampling error

shoulders

standard deviation of the

sample (s)

standard error of the mean

statistics

sum of squares

symmetry

tails

two-tailed test

unbiased estimate

unimodal

variance of the sample (s2)

x-axis

y-axis

z-score
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Chapter 2

LOGICAL STEPS

OF CONDUCTING

QUANTITATIVE RESEARCH:

HYPOTHESIS-TESTING

PROCESS

LEARNING OBJECTIVES

� Understand the logic and purpose of the hypothesis-testing
process in scientific research.

� Identify the components and application of alternative and
null hypotheses.

� Examine the meaning of alpha level and commonly used
criterion levels of alpha (α) used in research.

� Explore the elements used to choose an appropriate sta-
tistic for use to test a null hypothesis.
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� Understand decision rules associated with rejecting and
failing to reject a null hypothesis.

� Realize the importance of including effect size and confi-
dence interval information to further clarify making a
decision concerning the null hypothesis.

The hypothesis-testing process is a logical sequence of steps to
conduct the statistical analyses in a quantitative research study. Indeed,
hypothesis testing is the most widely used statistical tool in scientific

research (Salsburg, 2001, p. 114). However, we must remember that no method,
including obtaining statistical results from hypothesis testing, is the absolute final
answer to a research problem. As Snedecor and Cochran (1967) stated, “But
the basic ideas in statistics assist us in thinking clearly about the problem, provide
some guidance about the conditions that must be satisfied if sound inferences are
to be made, and enable us to detect many inferences that have not good logical
foundation” (p. 3).

HYPOTHESIS-TESTING PROCESS

There are six steps of the hypothesis-testing process that provide the procedure for
conducting the statistical analyses used in this book. Descriptions and key con-
cepts are discussed for each hypothesis step.

1. Establish the alternative (research) hypothesis (Ha).
An alternative (research) hypothesis (Ha) is a speculative statement about

the relations between two or more variables used in a quantitative research
study (Kerlinger & Lee, 2000). A researcher initially develops one or more
research hypotheses about the direction and expected results of a study. In
experimental and quasi-experimental research, the variables stated in an
alternative hypothesis reflect the changes in an outcome (dependent variable)
that can be attributed to a cause (independent variable) (Martin & Bridgmon,
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2009). Researchers focusing on the predictive relationships among variables
often use the terms predictor variable (independent) and criterion variable
(dependent).

An alternative hypothesis can be conceptualized as either a nondirectional
hypothesis or a directional hypothesis. A researcher does not have a clear
expectation about what direction the results of study will likely take when a
nondirectional hypothesis is used. Typically, there is little or no previous
evidence to inform the researcher as to what the results have been in the past
represented by similar studies when a nondirectional alternative hypothesis is
used. For example, if a researcher is studying the effects of cognitive-
behavioral therapy (CBT) and interpersonal therapy (IPT) on weight gain
among women with bulimia, a researcher might state a narrative nondirec-
tional alternative hypothesis (Ha) as:

Ha: There will be significant differences in weight gain among women
with bulimia when comparing the effects of cognitive-behavioral therapy
to the effects of interpersonal therapy.

This nondirectional alternative hypothesis does not declare a direction as to
whether the one therapy condition will produce more effects than the other
therapy condition. We can also write this nondirectional hypothesis in the
following symbolic format:

Ha : μ1 ðCBTÞ 6¼ μ2 ðIBTÞ

The symbol μ (mu) represents a population mean that we estimate using a
sample mean (X ) when conducting inferential statistics to assess mean dif-
ferences. In this case, we are hypothesizing that the population mean of
weight gain resulting from CBT will be different from (not less than or
greater than) the population mean of weight gain produced by IPT. We
analyze sample means as estimates of the population means and might choose
to use an independent t-test in this example.

A directional alternative hypothesis does state an expectation for the
outcome of the study. Researchers usually design their studies using previous
research to guide them. Since a major purpose of research is to integrate study
results with related previous and ongoing studies and theory, directional
hypotheses are commonly used by researchers.
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The following directional alternative hypothesis could be written based on
previous research studies showing cognitive-behavioral therapy to be more
effective than interpersonal therapy in reducing weight gain among women with
bulimia.

Ha: Cognitive-behavioral therapy will produce significantly higher
weight gain among women with bulimia when compared to the effects
of weight gain produced by interpersonal therapy.

This directional alternative hypothesis is a declaration that cognitive-behavioral
therapy will produce more weight gain than interpersonal therapy among
women with bulimia. Symbolically, the directional alternative hypothesis can
be written as:

Ha : μ1 ðCBTÞ . μ2 ðIBTÞ

This symbolic alternative hypothesis states that the population mean of
weight gain resulting from CBT will be larger (greater) than the effects of IPT
on the population mean of weight gain.

2. Establish the null hypothesis (H0). This is the hypothesis that is tested
statistically.

The null hypothesis (H0) can be viewed as: (1) the hypothesis whose
nullification, statistically, would be taken as evidence in support of a specified
alternative hypothesis, or (2) the hypothesis that there is “no difference
between two sets of data with respect to some parameter, usually their means,
or of no effect of an experimental manipulation on the dependent variable of
interest” (Nickerson, 2000, p. 242); the latter is most commonly used in
psychological research. The “no difference” approach is often referred to as a
nil null hypothesis or a nil hypothesis.

We will be combining both approaches in the statistical nullification of
the null hypothesis in support of a specified alternative hypothesis. Also, we
will be testing no difference nulls and suspending judgment when we fail to
reject nulls. A null hypothesis related to our previous alternative hypothesis
example can be stated as:

H0: There will be no difference in weight gain among women with
bulimia when comparing the effects of cognitive-behavioral therapy to
the effects of interpersonal therapy.
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A “no difference in effects” approach is taken in testing the null hypothesis.
Also, a statistical nullification of the null would provide evidence in support
of the specified alternative hypothesis. The null can be stated symbolically as:

H0: μ1 ðCBTÞ ¼ μ2 ðIBTÞ

The null hypothesis states that the population means of weight gain resulting
from CBT and IPT will be equal. There will be no difference between the
means resulting from either treatment condition.

When the null hypothesis is rejected, a significant difference is found
between the sample means of weight gain (estimating the population means)
produced by the treatment conditions. Moreover, we will conclude that this
nullification provides evidence in support of the alternative hypothesis. If the
sample means are not significantly different from each other, we have an
inconclusive decision when we fail to reject the null hypothesis. We cannot
say that there is absolutely no difference between the two means in this case.
We instead suspend judgment as to the relation between the two means that
are not significantly different from each other.

3. Decide on the risk that one is willing to take for being wrong if one
rejects a true H0, thus making a Type I (alpha [α]) error. Also, make a
decision about the risk one is willing to take for being wrong if one fails
to reject a false H0, thus making a Type II (beta [β] error).

A researcher chooses (sets) an alpha level (α) prior to data analysis.
Common alpha levels used in research are .001, .01, .05, and .10, with the
two most common being α ¼ .05 and α ¼ .01. One of the founders of
statistics, Sir Ronald A. Fisher, suggested using α ¼ .05 in the early 1900s
(Fisher, 1925). His practice evolved into the four most used alpha levels
ranging from .001 to .10. As Nickerson (2000) states, “If α is set at .05, say,
and a significance test yields a value of p equal to or less than .05, the null
hypothesis is rejected and the result is said to be statistically significant at that
level” (p. 243).

We also need to consider the chances associated with making a beta error
(Type II error) when we select an alpha level for a particular study. We do this
by conducting an a priori power analysis, which tells us the probability in a
proposed study of correctly rejecting the false null hypothesis in favor of an
alternative hypothesis. The power analysis is conducted before a study begins
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using an estimated alpha level, sample size, and effect size. Power analysis is
discussed further in Chapter 3.

4. Decide on the appropriate statistic to be used to test the H0 and the
associated sampling distribution to be used (e.g., z, t, F, r, R, χ2) on
the assumption that H0 is true.

The next step in the hypothesis-testing process is to identify the appro-
priate statistic and associated sampling distribution to use to test the null
hypothesis. The sampling distribution is a theoretical probability distribution
that provides the foundation for testing hypotheses statistically.

Several issues are examined to determine whether a certain statistic is
appropriate to use for a particular analysis (testing of an H0) in a study.
The choice of a statistic is based on elements related to: (1) the focus of the
interplay among variables (e.g., relationships or differences), (2) the number
of independent and dependent variables used in an analysis, (3) the scales of
measurements of the dependent variables, (4) the number and relationships
(dependent vs. independent) of participant groups being compared, and
(5) the extent that underlying assumptions of the statistic are met. A statistical
design process integrating these elements is presented in Chapter 4.

5. Draw a sample of size N; screen the data for accuracy, missing values,
and outliers; and assess whether the underlying assumptions of the
statistic being used are met.

It may be necessary to change a decision about the statistic chosen or to
modify the data set based on your data screening results. Compute the sample
statistic and compare the result to the critical value (CV) (e.g., z.95, t.99, F.999)
of the sampling distribution. More commonly, a comparison is made
between the exact probability value obtained from the computer-generated
statistical result and the chosen alpha level to determine significance.

Initially in the data screening process, it is important to conduct data
cleaning once the data is collected. Study data may be entered into a com-
puterized statistical program by hand or imported or downloaded from
another source. All methods of data compilation have the potential for
varying degrees of imprecision. It is therefore important to use various
methods to check the accuracy of data before conducting statistical analyses.

The extent and pattern of missing data are another focus of data
screening. Missing data can occur from data handling error, from study
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participants failing to respond to items, or from participants discontinuing
their involvement in a study. Missing data can make it difficult to interpret
and generalize the results of statistical analyses to the population from which
the study sample was drawn.

Data diagnostic procedures are undertaken after the data are determined
to be accurate. Many statistical procedures, known as parametric statistics,
require that certain underlying assumptions are met in order to use a
given statistic with a data set. A parametric statistical process is undertaken
when sample characteristics are used to estimate population parameters
such as those from the known normal distribution, t-distribution, and
F-distribution. For example, a one-way analysis of variance requires that the
scores of the dependent variable approximate a normal distribution,
their variances across groups are homogeneous or constant, and there is
independence of observations. If the underlying assumptions are not found to
be met, then a researcher may need to use a nonparametric statistic
that does not require the same strict underlying assumptions. Another
common alternative is to transform the data to minimize the effects of
outliers, nonnormal distributions, heterogeneous variances, and dependence
of observations.

Once the data are readied from data screening and diagnostics, the
testing of the null hypothesis can be conducted using the statistical analysis.
The statistical analysis significance probability (generated from the proba-
bilities of the sampling distribution used) is compared to the selected
alpha level. The researcher makes a decision to reject or fail to reject the null
hypothesis.

6. Make a decision regarding the H0; either reject the H0 in favor of the Ha

or fail to reject H0. Additionally, provide effects sizes and confidence
intervals.

If the statistical significance probability is equal to or less than the alpha
level, the null hypothesis is rejected. The decision of failing to reject the H0 is
made if the statistical significance probability is greater than α. For example,
in rejecting the null hypothesis when α ¼ .05, we will make a Type I error
no more than five times in 100. There is only a 5 percent or less chance that
we reject a true H0. This statistical decision making can be illustrated using
the null hypothesis stated earlier.
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(Narrative Null)

H0: There will be no difference in weight gain among women with
bulimia when comparing the effects of cognitive-behavioral therapy to
the effects of interpersonal therapy.

(Symbolic Null)

H0: μ1 ðCBTÞ ¼ μ2 ðIBTÞ

We will say that we found a statistical significance probability of
p ¼ .003 and the alpha level of significance is α ¼ .05. The p ¼ .003 is less
than the alpha criterion of α ¼ .05 so the rule is to reject the H0. We can
conclude that there was a significant difference in weight gain resulting from a
comparison of the CBT and IBT conditions. There is a less than 5 percent
chance that we reject a true H0 ( p , .05). We expect that fewer than five
times in 100 would there be no difference between the two means. There is
another way to state this statistical decision of rejecting the null hypothesis by
linking to sampling distribution theory. It could be said that if one repeatedly
took two random samples from the same population and tested the differ-
ences between their means, one would expect to get a difference that was
significant at the .05 level about five times in 100 (Nickerson, 2000).

Now, let’s say that that we found a statistical significance probability
of p ¼ .11 and the alpha level of significance is still α ¼ .05. The obtained
p ¼ .11 is greater than the alpha criterion of α ¼ .05, so the rule is to fail to
reject the H0 ( p . .05). We can conclude that it is inconclusive that CBT
and IPT have a differing effect on weight gain among participants. When we
fail to reject the null hypothesis, we cannot conclude that there is an absolute
noneffect or no difference. We would not say that CBT and IPT were equal
in their effects on weight gain. A nonsignificant result is an inconclusive result
or indefinite decision.

Making a decision about the null hypothesis is not enough. Additional
information is needed to help draw accurate conclusions about one’s study
data. Cohen (1994) provided three recommendations to improve the null
hypothesis significance testing (NHST) process. First, understand that there
is no magic alternative to NHST. Second, before generalizing from your data,
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understand and improve the data using “detective work” methods such as
data screening or exploratory data analysis (EDA). Third, routinely report
effect sizes and report data in the form of confidence limits. Jones and Tukey
(2000) proposed using confidence intervals when they are available and rec-
ognizing the limitations with traditional NHST.

Jones and Tukey (2000) also proposed another conclusion-making
process, emphasizing that a researcher should assess the sample data and
entertain one of three conclusions: “(a) act as if μA � μB . 0; (b) act as if
μA � μB , 0; or (c) act as if the sign of μA � μB is indefinite, that is, is not
(yet) determined” (p. 412). Again, using our previous example, the first
possible conclusion following statistical analysis is that μCBT � μIPT . 0,
which reflects that CBT produces a higher weight gain than the IPT con-
dition. The second possible conclusion is that μCBT � μIPT , 0 resulted in
CBT producing less weight gain than the IPT condition. The final possible
conclusion is that μCBT � μIPT is indefinite—that is, inconclusive.

It is important to remember that replication studies provide the tenability
of scientific findings. Scientific conclusions result from a stream of well-
designed studies in which data are compared across studies to formulate
theory. There is no final scientific truth, but, instead, there is evolving
scientific theory.

SUMMARY

The six steps of the hypothesis-testing process were discussed in this chapter. The
hypothesis-testing process is the model or template that is used to learn
the statistical analyses covered in the book. The hypothesis-testing process is the
most widely used tool in science; however, there are limitations to be aware of.

PROBLEM ASSIGNMENT

The components of the hypothesis-testing process were presented in this chapter,
including a rationale for decision making regarding the rejecting or failing to
reject the null hypothesis. Examples are available on the companion website for
you to practice your understanding of the hypothesis-testing process.
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KEY TERMS

alpha level (α)

alternative (research) hypothesis (Ha)

a priori power analysis

beta error (Type II error)

confidence intervals

criterion variable

data screening process

dependent variable

directional hypothesis

effect sizes

independent variable

nil null hypothesis

nondirectional hypothesis

null hypothesis (H0)

nullification

parametric statistics

predictor variable

replication studies

sampling distribution

suspending judgment

μ (mu)
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Chapter 3

MAXIMIZING HYPOTHESIS

DECISIONS USING

POWER ANALYSIS

LEARNING OBJECTIVES

� Understand the balancing considerations to avoid making
Type I andType II errors in choosing an alpha level for a study.

� Explore illustrations of study examples to avoid making
Type I and Type II errors.

� Understand the difference between a priori power analysis
and post hoc power analysis.

� Examine the three elements used in conducting an a priori
power analysis: alpha level, estimated effect size, and sample
size.

� Understand the three classes of effect sizes.

� Conduct and interpret an a priori power analysis using
G*Power.
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Making a correct decision about rejecting or failing to reject a null
hypothesis relates to probability, not certainty. The null hypothesis
statistical testing process balances between avoiding making either

a Type I or Type II error. An a priori power analysis can be conducted to help a
researcher maximize correctly rejecting a false null hypothesis in favor of the
alternative hypothesis in a study.

The third step in the hypothesis testing process focuses on identifying an alpha
level as a criterion for making a decision about rejecting or failing to reject a null
hypothesis in a study. Choosing an alpha level involves considering avoidingmaking
both aType I error (alpha [α] error) and aType II error (beta [β] error)whenmaking a
decision to either reject or fail to reject a null hypothesis (H0). The correctness of
rejecting or failing to reject an H0 relates to a balance between avoiding making a
Type I error and avoiding making a Type II error. Refer to Table 3.1 as we discuss
this statistical decision process of rejecting or failing to reject a null hypothesis,
balancing the avoidance of making a Type I or Type II error.

The heading called Possible Study Decision in Table 3.1 refers to the deci-
sions facing a researcher to reject or fail to reject a null hypothesis related to a
particular study. Foundational to the statistical hypothesis testing process is an
understanding that when we reject or fail to reject a null hypothesis we never
know absolutely if our decision was correct, because we are using probability as
the basis of our decision. We want to make a tenable decision based on a high
degree of probability that our decision is correct. We can conceptualize the
correctness of our decision by comparing the possible study decisions about
the null to the hypothetical actual truth (theoretical) about the null in our study.

We will use the previous example null of H0: μ1(CBT) ¼ μ2(IPT) with α ¼ .05
to illustrate the possible statistical decisions using Table 3.1.We can conceptualize a
true H0 using our study example as meaning that there is no significant difference
between means and a false H0 as there is a significant difference between means.

TABLE 3.1 Decision Balance between Type I and Type II Errors

Actual Truth about H0

Possible Study Decision H0 True H0 False

Reject H0 Type I (α) error Correct decision

p ¼ 1 � β ¼ Power

Fail to reject H0 Correct decision Type II error

p ¼ β
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If we reject the H0 (p , .05), we decided that there is a significant difference
in weight gain of women with bulimia who received cognitive-behavioral therapy
(CBT) compared to those who were provided the interpersonal therapy (IPT)
condition. However, if in actual truth (theoretical) the null hypothesis is true—
that is, there is no difference in weight gain comparing the mean of the CBT
group to the mean of the IPT group of participants—then we made a Type I (α)
error by rejecting a null hypothesis when we thought there was a difference in
weight gain between the groups but in actuality there was no difference.

We make a correct decision if we reject the H0 and in actuality the H0 is false.
The decision that there is a difference in mean weight gain between the groups is
correct because in actual truth the H0 is false.

We make a Type II (beta) error if we fail to reject the H0 and in actual truth
the null hypothesis is false. We declare there is no significant difference between
group means when in actuality there is a significant difference in weight gain
produced by the two conditions of CBT and IPT.

If we fail to reject the H0 in our study and in actual truth the null hypothesis
is true, we make a correct decision. We decided that there is no significant
difference in weight gain produced by the CBT compared to the IPT conditions
and in actuality there is no difference in weight gain between the two condition
groups. As we discussed in Chapter 2, it is better to say that we suspend judg-
ment on a difference when we fail to reject a null hypothesis.

BALANCE BETWEEN AVOIDING
TYPE I AND TYPE II ERRORS

There is a give-and-take relationship between avoiding making either a Type I
error or a Type II error when trying to make a correct decision about rejecting or
failing to reject a null hypothesis. The alpha, beta, and the a priori power levels
chosen by a researcher can influence the correctness of a significance decision
about the null hypothesis. The influence of alpha related to making Type I and II
errors is illustrated first.

Illustration of Avoiding Making a Type I (Alpha) Error

Suppose that administrators of a large school district have learned about a new
curriculum that has demonstrated effectiveness in improving reading scores in
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elementary schools in two other large school districts in their state. The
administrators have not concluded that they have a problem in their district, but
the other districts have shown an increase in student reading achievement when
they adopted the new curriculum. The school district administrators have esti-
mated that to implement the new reading curriculum it would cost the district
$900,000 in new materials and teacher training. The administrators plan a
study to assess the effectiveness of the new reading curriculum compared to the
old curriculum before making a decision. The school district research and
development director creates and implements a randomized design comparing
two treatments (old curriculum, new curriculum) on standardized reading
achievement scores. We present the null and alternative hypotheses for this
hypothetical study and go through possible decisions in Table 3.1 to discuss the
reciprocal relationship between Type I and II errors in possible decisions about
the null hypothesis.

H0: μOLD CURRICULUM ¼ μNEW CURRICULUM

Ha : μold curriculum , μnew curriculum

Would it be of more concern for the researcher to avoid making a Type I error
or a Type II error in this example? If a Type I error is made, theH0 is rejected when
in the true state of the world H0 is true. The decision is made that there is sig-
nificantly higher reading achievement scores of students who received the new
curriculum versus the old curriculum; however, there really is no significant dif-
ference between the two curricula to improve reading achievement scores.

A Type II error would suggest that the researcher failed to reject the H0 when
the actual truth is that the H0 is false. The researcher declared that there is no
significant difference in reading achievement between the two curricula when in
fact the new curriculum is more effective than the old curriculum.

It is always a balancing act between avoiding either a Type I or a Type II
error, so there is no one absolutely true answer to the question posed earlier. The
situational factors related to the research study contribute to the importance of
avoiding Type I and II errors.

It could be argued in this situation that the researcher might be most con-
cerned about avoiding making a Type I error, deciding there is a difference in the
effect of the new curriculum compared to the old curriculum when in truth there
is no difference. In making this error the school district might spend $900,000
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and put forth a great deal of effort in training teachers to use the new curriculum
when the new curriculum is no better than the old curriculum in increasing
reading scores.

Selected alpha levels can affect the balance to avoid making either a Type I or
a Type II error. You recall that the four most common alpha levels used in
research as the criterion for rejecting or failing to reject an H0 are:

More Stringent Less Stringent

Alpha levels .001 .01 .05 .10

More stringent signifies that is more difficult to reject the null hypothesis and
less stringent means that it is less difficult to reject the null hypothesis. The choice
of a more stringent alpha level (.001 or .01) reduces the chances of making a
Type I error. For example, if the H0 is rejected at the α ¼ .01 level, then there is
a less than 1 percent chance that a true H0 was rejected. In contrast, choosing an
α ¼ .10 would result in a 10 percent chance of rejecting a true H0. Choosing a
more stringent alpha level in this example would reduce the probability of making
a Type I error, which would increase the researcher’s confidence that there is a
real difference between the two curriculums on improving reading achievement.
However, making the alpha level more stringent increases the chances of making
a Type II error of failing to reject the H0 when there may be an important dif-
ference between the two curricula on reading achievement but at a less stringent
alpha level.

Illustration of Avoiding Making a Type II (Alpha) Error

Officials at a state department of public transportation want to determine from
a series of studies how blood alcohol intake affects driving skills. The officials
want to obtain evidence to consider whether driving under the influence (DUI)
laws should be changed relative to blood alcohol concentration (BAC) levels.
In one study, a sample of participants are randomly assigned to one of four
alcohol consumption conditions that produce BAC levels of either .03, .06,
.08, or .10. The participants are asked to drive automobiles through a driv-
ing skills course after reaching their designated BAC levels. The mean driving
skill levels are compared across the BAC condition groups. A lower mean

c03 18 June 2012; 18:41:42

MAXIMIZING HYPOTHESIS DECISIONS USING POWER ANALYSIS � 43



score reflects lower-skill performance during driving. The null and alternative
hypotheses are stated as:

H0: μBAC:03 ¼ μBAC:06 ¼ μBAC:08 ¼ μBAC:10

H0: μBAC:03 . μBAC:06 . μBAC:08 . μBAC:10

Would it be of more concern for the researcher to avoid making a Type I error or
a Type II error in this example? There may be more reason in this example to
emphasize the avoidance of making a Type II error. If the researcher fails to reject
the H0 that there is no difference in driving skills across the BAC levels when in the
truth there is a difference, making this Type II error could result in decisions
by the department of public transportation to allow more unsafe drivers on the
road. The researcher may want to choose a less stringent alpha level (.05 or .10) to
improve the chances of finding a difference if it exists. This decision, though, would
increase the chances of making a Type I error. The researcher may declare differences
in driving skills when in fact differences in BAC levels have no effect on driving skills.

A Priori Power Analysis

We have shown that the selection of alpha levels can influence the balance between
making either a Type I or a Type II error. Another important ingredient to
consider in the balancing process is a priori power (see Table 3.1). While beta (β) is
incorrectly retaining a false H0 (Type II error), power is the probability of correctly
rejecting a false null hypothesis in favor of the stated alternative hypothesis. Just as a
researcher develops a rationale for selection of an alpha level before (a priori) the
study begins, the researcher also wants to conduct an a priori power analysis.
A researcher also analyzes post hoc (observed) power after the study is conducted.

An a priori power probability is calculated before the study begins; its value
ranges from 0 to 1.0, and we want it to be as large as possible. A priori power is an
estimate of the probability of correctly rejecting a false null hypothesis in favor of
an alternative hypothesis when important elements in a study are combined. The
three important elements that comprise power are the (1) selected alpha level,
(2) planned study sample size, and (3) estimated a priori effect size.

A researcher chooses an alpha level for a study following a process as illus-
trated in the earlier discussion. The researcher plans a study sample size based on
practical issues such as availability and cost and also increasing the power of the
study. Moreover, larger sample sizes are important in being able to generalize
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study findings to a target population and maximize the likelihood of finding a
treatment effect if it exists in a study.

An effect size (ES) is used as either an a priori estimator in power analysis or a
post hoc (after the study) measure of the magnitude of an effect or relationship.
An effect size provides information about practical importance of a null
hypothesis statistical finding.

There are several types of effect sizes that are organized into three classes: (1)
standardized differences effect sizes, (2) variance-accounted-for effect sizes, and
(3) corrected effect sizes (Vacha-Haase & Thompson, 2004). The standardized
differences effect sizes are standardized scores (z-scores). A commonly used
standardized difference ES is Cohen’s d statistic as defined by d ¼ X Treatment �
X Control=SDPooled. The X Treatment is the sample mean of the treatment group on a
dependent variable, and the X Control is the mean of the control group. The
SDPooled is the pooled (weighted average) standard deviation of the standard
deviations of both groups combined. Let’s say that an antidepressant medication is
compared to a placebo condition to improve mood symptoms as measured by a
standardized test of mood where high scores reflect better mood. The sample means
of mood scores and the pooled standard deviation are X AntidepressantMedication ¼ 45,

X Placebo ¼ 27, and the SDPooled ¼ 8. Then, d ¼ (45 � 27)/8 ¼ 18/8 ¼ 2.25.
We can say that the study results show that the mean score of mood was 21/4
standard deviations higher for the participants receiving antidepressant medication
than for the participants who were in the placebo condition. Cohen (1988) also
developed guidelines for identifying whether an effect size is small, medium, or
large (see Table 3.2).

A d ¼ 2.25 is well beyond the cutoff criterion (..80) for being a large effect size.
Effect sizes are best interpreted in the context of the variables being studied and in
relation to findings from similar previous studies (Vacha-Haase&Thompson, 2004).
Cohen’s strength of effect size guidelines can be used for approximate general inter-
pretations. These guidelines for d are most useful with the results of an independent

TABLE 3.2 Cohen’s Strength of d Effect Sizes

Effect Size d

Small .20

Medium .50

Large .80
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t-test. Cohen has also developed guidelines for other statistics (see Cohen, 2008).
Glass’sΔ (delta) statistic is another example of a standardized difference effect size. It is
similar to the d statistic except that the denominator is the standard deviation of the
control condition, soΔ ¼ X Treatment � X Control=SDControlGroup.

A second class is variance-accounted-for effect sizes. These effect sizes are
interpreted differently than standardized differences effect sizes. Variance-
accounted-for effect size values range from 0 to 11.0, whereas the standardized
differences effect sizes are based on standard deviation units and can be plus or
minus and be well over 61.0.

Eta-squared (η2) is a commonly used variance-accounted-for effect size. It is
defined as SSTreatment/(SSTreatment 1 SSError) when using analysis of variance.
Sum of squares treatment (also called SSBetween) is a calculated value that reflects
systematic variation due to the treatment effect. Sum of squares error (also called
SSWithin) is a value reflecting deviations of individual scores from its group mean
that are difficult to explain. When dividing SSTreatment by itself and another value
SSError it is clear that the resulting value will be less than 1.0. So, if a study
comparing two relaxation techniques and a no-treatment control condition on
reducing stress produces a SSTreatment ¼ 356.633, and a SSError ¼ 1,672.350,
then η2 ¼ 356.633/(356.633 1 1,672.350) ¼ .176.

Cohen’s guidelines for strength of η2 effect sizes are presented in Table 3.3. An
η2 ¼ .176 would fall beyond the minimum level (..14) for being a large effect.

An effect size for a Pearson product-moment bivariate correlation coefficient
(r) or a multiple correlation coefficient (R) is achieved by squaring the correlation
coefficients, resulting in r2 and R2 respectively. If a correlation coefficient
between the amount of marijuana use and the number of hours watching tele-
vision is r ¼ .44, the r2 ¼ (.44)2 ¼ .194. The r2 ¼ .194 would fall between a
small and a medium effect size according to Table 3.4.

The last class of effect sizes is corrected effect sizes. The effect size of sample
has its own uniqueness (sampling error variance) that may not easily generalize to
the population it was sampled from. Additionally, the unique aspects of a sample

TABLE 3.3 Cohen’s Strength of η2 Effect Sizes

Effect Size η2

Small .01�.06

Medium ..06�.14

Large ..14
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may not be readily replicated in other samples. Therefore, some effect sizes have
corrections or adjustments to better estimate population parameters and enhance
reliability across replication studies.

Omega squared (ω2) is an effect size used in analysis of variance that is a
more conservative estimate of effect size. This is evident using the same data
from the previous η2 calculation, where K (number of groups) ¼ 3, SSTreatment ¼
356.633, SSError ¼ 1,672.350, and SSTotal ¼ (SSTreatment ¼ 356.633 1 SSError ¼
1,672.350) ¼ 2,028.983, and MSError ¼ 29.339.

ω2 ¼ SSTreatment � ðK � 1ÞMSError
SSTotal þMSError

¼ 356:633� ð2Þ29:339
2,028:983þ 29:339

¼ 297:955
2,058:322

ω2 ¼ :145

A comparison of η2 ¼ .176 and ω2 ¼ .145 demonstrates the conservative
strength of a corrected effect size.

An adjusted r2 is another common corrected effect size that is also a more
conservative estimate. The r2 ¼ .194 we used to illustrate a variance-accounted-
for effect size might result in an adjusted r2 ¼ .167.

The interpretations associated with standardized differences and variance-
accounted-for effect sizes are quite different. It is important for a researcher to
connect an effect size with the correct interpretation and be careful about cross-
interpretation from one effect size to another.

An effect size used in an a priori power analysis is an estimate of what is likely
to be the treatment effect of the planned study. Ways to estimate an effect size

TABLE 3.4 Cohen’s Strength of r Effect Sizes

Effect Size r

Small .10

Medium .30

Large .50
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used for a study include using prior research, deciding on what size effect is
important, and choosing a value based on professional judgment (for a further
discussion see Howell, 2010). It is preferred to select an estimated effect size that
resulted from a similar previous study or series of such studies.

The three ingredients necessary to conduct an a priori power analysis are α,
sample size, and a priori effect size. A priori power analysis occurs prior
to conducting a study for the purpose of assessing whether the study is worth
conducting with the given planned alpha level, sample size, and estimated effect
size. The researcher wants to know, when given these elements, the likelihood of
finding a treatment effect if it exists. In other words, the researcher wants to
identify the probability of correctly rejecting a false null hypothesis (power) in
favor of the alternative hypothesis. The researcher would like to be assured with a
1.0 power (100 percent chance); however, that can be difficult to achieve and
may not be necessary. A commonly used power value criterion to aim for in power
analysis is power ¼ .80, reflecting an 80 percent chance of correctly rejecting a
false null hypothesis in favor of the stated alternative hypothesis. A researcher
combines and analyzes the three a priori power elements and hopes that the
resulting value is equal to or greater than the power criterion of .80.

For example, a researcher of a pharmaceutical company wants to study the
effects of a new pain medication in reducing headache pain when compared to a
placebo (inactive) medication (H0: μPainMedication ¼ μPlacebo). The average effect size
from three similar previous studies was a d ¼ .65, and it will be used as the esti-
mated effect size in the a priori power analysis. The researchers in the previous study
used an α ¼ .01 because they were more concerned with avoiding making a Type I
error. There are similar drugs that are effective for reducing headaches, and it will be
expensive to mass-produce and market the new drug. If the new medication has a
similar effect to other similar drugs then there may be no reason to develop it.
The researcher is planning to use 60 participants (N1 ¼ 30, N2 ¼ 30) for the
study. A useful online power analysis program called G*Power 3.1 (Faul, Erdfelder,
Lang, & Buchner, 2007) is used for this example and other examples in the book.

Power Analysis Using G*Power 3.1.2

Conduct the following steps.

1. Create a folder on your desktop called gpower.

2. Google G*Power.
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3. Click on G*Power3 is now available.

4. Then, click on Download and register and click on the download and save
to your folder.

5. Double click on a created folder called GPower3.

6. Then, double click on a box or icon called GPower 3.1.2.

The first page you see is found in Figure 3.1. Follow these nine steps to conduct a
power analysis for the example.

1. Under Test family . t tests should be selected. The analysis will compare
two means, so a t-test is appropriate.

2. Under Statistical test . select Means: Difference between two indepen-
dent means (two groups). This is an independent t-test because two
independent groups of participants are being compared on pain reduction.

3. Under Type of power analysis . select A priori: Compute required
sample size—given α, power, and effect size.

4. BesideTail(s),One should be selected.We expect that the group of participants
receiving the pain medication will experience a significantly reduced headache
pain when compared to the placebo group (Ha: μ1PainMedication , μ2Placebo).

5. Type in beside Effect size d the example estimated effect size ¼ 0.65, which
is an average effect size from three similar previous studies.

6. Type next to α err prob the selected example alpha ¼ 0.01.

7. Type next to Power (1�β err prob) the selected power criterion ¼ 0.80.

8. The number 1 should be typed next to Allocation ratio N2/N1. For the
example, there are 60 participants with 30 participants in each group, so
the allocation ratio would be 30/30 ¼ 1.

9. Click Calculate at the bottom right of the page.

The results of the a priori power analysis are shown in Figure 3.2. The
example elements were entered into G*Power: α ¼ .01, estimated effect
size ¼ .65, and power criterion ¼ .80 for a one-tailed test using an equal number
of 30 participants in each of two groups for a total sample of N ¼ 60. The results
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show that to reach an actual power of .8010789 using the planned α and esti-
mated effect size, a total sample size of N ¼ 98 with 49 participants in each of the
two groups is required. Therefore, it would be advisable for the researcher to plan
on increasing the total sample size to $98 participants before conducting the
study to reach a power of .80.

Lowering the alpha level would reduce the sample size of participants needed
to reach an a priori power ¼ .80. However, that is not the reason to select an

FIGURE 3.1 G*Power First Page
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alpha level. The alpha was selected to choose the right balance between avoiding
either a Type I or a Type II error related to the particular context of the study.
Increasing the estimated effect size would also increase the a priori power. The
estimated effect size was based on previous studies’ findings, and one cannot
change the results of previous studies. Increasing sample size is a legitimate way to

FIGURE 3.2 A Priori Power Analysis for the Example
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increase a priori power, and it should be done in this example to maximize
finding a significant difference, if it exists, between the effects of a new medi-
cation compared to a placebo in reducing headache pain.

SUMMARY

The correctness of rejecting or failing to reject an H0 is a balance between avoiding
making either a Type I or Type II error. There is no absolutely correct decision
that can be made. However, a researcher can conceptualize the level of alpha most
relevant to the context of the study. Moreover, the magnitude of treatment effects
from previous research can be used to help estimate the likely outcomes of a study.
Finally, it is important to select a sample size thatwill be conducive to finding an effect
in a study. Alpha level, an a priori effect size, and sample size can be combined to
estimate the probability of finding a real effect in a study. An a priori power analysis is
used before a study is implemented to identify a probability of finding a real effect.

PROBLEM ASSIGNMENT

Additional examples of conducting power analysis are on the companion website
for you to complete. Use the problem presented in this chapter to guide you as
you complete the assignment. Your instructor will evaluate your completed
worksheet when it is finished.

KEY TERMS

a priori effect size

a priori power

Cohen’s d statistic

corrected effect sizes

effect size (ES)

eta-squared (η2)

Glass’s Δ (delta) statistic

omega squared (ω2)

post hoc (observed) power

power analysis

r2

R2

standardized differences

effect sizes

Type I error (alpha [α] error)

Type II error (beta [β] error)

variance-accounted-for effect sizes
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Chapter 4

RESEARCH AND

STATISTICAL DESIGNS

LEARNING OBJECTIVES

� Understand the importance of carefully formulating
experimental conditions and procedures, reducing the
imprecision in measurement, and controlling extraneous
experimental influences.

� Explore methods to control for extraneous variables.

� Understand the threats to internal validity of experimental
and quasi-experimental designs.

� Examine commonly used experimental and quasi-experi-
mental designs and examples of statistical methods that can
be used in the designs.

� Understand basic models used in correlation methods.

� Understand issues to consider in choosing statistics to use
in different research problems.
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The purpose of this chapter is to identify important components of
establishing experimental and quasi-experimental research by examining
various designs. Correlational research models are also discussed.

Statistical designs are essentially linked to research designs. Research designs
provide the blueprint for researchers to find answers to research questions. The
choice and interpretation of statistics used in a particular study is dependent
upon the research design selected by a researcher. A class of research designs
called experimental designs has the purpose to assess outcomes of cause and effect
among variables. Generally, the purpose of experimental research is to manage
and understand the change among variables by maximizing experimental variance,
minimizing error variance, and controlling extraneous variance (MaxMinCon)
(Kerlinger & Lee, 2000).

A researcher maximizes experimental variance by carefully formulating
experimental conditions and procedures. A researcher minimizes error variance
by strategically reducing the imprecision in measurement and random error
fluctuations. Controlling extraneous variance is dealt with by identifying and
reducing the effects of unwanted variables through the identification of well-
suited design, experimental procedures, and statistics (Martin & Bridgmon,
2009). A researcher considers several issues when choosing statistics to use for
varying research problems.

FORMULATING EXPERIMENTAL CONDITIONS

Experimental research is initiated based on well-developed research questions,
with alternative and null hypotheses usually connected to theory and previous
research. Independent (cause) variables and dependent (outcome) variables are
operationally defined. Operation definitions entail describing the variables in
detail, especially as to how they function and are measured.

For example, suppose a treatment method for seasonal affect disorder (SAD)
is an independent variable in a study and there are three treatment conditions
(light therapy, cognitive-behavioral therapy (CBT), and a minimal contact-
delayed treatment control condition). The dependent variable is the intensity of
symptoms of a current SAD episode.

The independent variable is assessed as to whether it was implemented as
planned, which is known as treatment integrity (treatment fidelity). A researcher
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operationally defines every aspect of the experimental conditions to ensure an
accurate and consistent implementation of the independent variable (treatment
delivery). Equally important is defining how to assess whether the participants
received (treatment receipt) and followed through with (treatment adherence) the
intended treatment (Shadish, Cook, & Campbell, 2002).

The dependent variable of intensity of symptoms of the current SAD episode
also needs to be operationally defined to know what the variable is and how it will
be measured. The dependent variable might be operationally defined as the scores
on a psychometrically validated instrument such as the Structured Interview
Guide for the Hamilton Rating Scale of Depression and SAD subscale (SIGH-
SAD). The researcher comprehensively identifies research that substantiates the
validity and reliability of the SIGH-SAD.

Operationalism is vital to understanding research and maintaining objectivity.
Moreover, clearly defined experimental procedures andmeasurements make it easier
for researchers to replicate studies to confirm or repudiate important findings.

REDUCING THE IMPRECISION IN MEASUREMENT

All research includes fluctuations between an observed quantity and its true
quantity. These fluctuations or differences are referred to as errors that represent
imprecision in measurement. Two important sources of error are sampling error
and error of measurement.

Sampling Error

A sample selected for study is intended to represent a population. Inferences
about sample statistics such as a mean and standard deviation are used to estimate
population parameters. It is highly unlikely that sample statistics will be exactly
the same as population parameters. The difference between a sample mean and a
population mean is referred to as sampling error. Indexes representing sampling
error are available to help researchers understand the differences between sample
statistics and population parameters. All parametric statistical procedures have
sampling error terms to account for sampling error. For example, the sampling
error index for the difference between a sample and a population mean (one-
sample t-test) is called the standard error of the mean. The standard error
terms associated with some other statistics include independent t-test (standard
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error of difference), analysis of variance F-test (mean square error), correlation
coefficient-r (standard error of estimate), and multiple regression (standard error
of regression coefficient).

The use of random sampling is the best way to reduce sampling error. Random
sampling involves taking a random sample from a larger population by selecting
cases by chance to represent the population. This probabilistic approach will
result in the most representative sample if it is done correctly. For example, the
first step for a researcher who wants to study third graders in a school district is to
obtain a complete list of all third graders. The researcher would choose a desired
sample size and then use a random number generator to select the number for
the sample from the complete list of third graders (population).

Ideally, the two-step process of first randomly selecting a sample of participants
and then randomly assigning them to a treatment condition is used in research for
generalized causal inference. However, it is uncommon for participants to be
randomly selected to participate in experimental studies (Shadish, Cook, &
Campbell, 2002). Random assignment of participants to treatment conditions is
required for a study to be considered experimental. The distinguishing charac-
teristic of quasi-experimental research is that random assignment is not used.

Shadish et al. articulate an alternative selection method to random selection
used by experimental researchers known as purposive sampling. Purposive sam-
pling is a deliberate process by a researcher to identify population characteristics,
including participants, treatments, outcomes, and settings, and then select a
sample that embodies the desired population characteristics.

Error of Measurement

A second source of error is error of measurement. When using measures from
participants to assess the dependent variables in a study, there are differences
between the participants’ observed scores and their true scores. An observed score is
the actual measured score of a participant, and a true score is the actual score
(theoretical) on the measure. Conceptually, an observed score is similar to a
sample characteristic, and a true score is similar to a population parameter.

Error of measurement can be attributed to both random error and systematic
error. Random error includes fluctuations is the characteristics of individuals, such
as the motivation levels of participants changing randomly from one assessment
to the next.
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A novice examiner may depart from standardized assessment procedures in
scoring or use an unreliable test in a study; these are examples of sources of
random error. Measurement reliability is especially affected by random error.

Systematic error is represented by a decrease or an increase of scores on a
dependent measure in a predictable way. This type of systematic error often
relates to procedural irregularities in the research process. A weight scale cali-
brated incorrectly and consistently measuring three pounds heavier than it
should represents systematic error. Systematic error most adversely affects mea-
surement validity.

Measurement error exists in all studies. We cannot eliminate errors in mea-
surement, but we can minimize their effects.

CONTROLLING EXTRANEOUS
EXPERIMENTAL INFLUENCES

Experimental research strives to accurately and consistently measure whether
changes in a dependent variable can be attributed to a specified independent
variable. Extraneous variables (nuisance variables) confuse the assessment of the
real effects of the independent variable on the dependent variable. Extraneous
variables are first identified and then efforts are made to control their con-
founding effects.

For example, a researcher wants to compare the effects of a hypnosis treat-
ment program to a nicotine gum therapy among smokers to see which program is
more effective in producing smoking abstinence. It is discovered that the group of
participants receiving the hypnosis treatment have a significantly lower average
number of years smoking compared to the nicotine gum therapy participants.
Prior number of years smoking is an extraneous variable that is salient in its
potential impact on the dependent variable of smoking abstinence. This extra-
neous variable needs to be accounted for and controlled to accurately understand
the cause-and-effect relationship between treatment and outcome.

Methods of Controlling Extraneous Variables

There are several general ways to control for extraneous variables. One way is to
eliminate an extraneous variable. For example, a researcher is concerned about the
extraneous effects of below-average and above-average IQ scores among
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individuals on correct responses in completing a task based on three methods of
instruction. So the researcher decides to select participants with IQ scores
between 6 one standard deviation from the mean.

Another way to account for extraneous variance is to build the extraneous
variable into the design. Prior evidence suggests that gender may confound the
results of interventions on math achievement. Gender can be included as an
independent variable in a design where its main and interaction effects can be
assessed with the primary independent variable of interest.

The effects of extraneous variance also can be statistically controlled using
techniques such as analysis of covariance and multiple regression. The extraneous
variable needs to be measured and then the dependent variable is adjusted to
account for its influence.

Matching participants across condition groups based on one or more extra-
neous variables can be used to rule out or hold constant their confounding effects.
A researcher might match participants in a treatment and control condition based
on gender, height, and age. A woman 50 000 to 50 200 in height who is between the
ages of 20 and 25 years is matched to participant with similar characteristics in
the other group. All participants would be matched on homogeneous char-
acteristics. Sophisticated propensity score matching methods have been refined in
recent years, which have enhanced the rigor of quasi-experimental designs (see
Cook & Steiner, 2010).

The most important way to control extraneous variance is using random
assignment. Each participant is assigned to experimental and control group con-
ditions totally by chance. Tables of random numbers or computerized random
number generators are used to accomplish random assignment. Random
assignment makes groups randomly similar to each other. It is less likely that one
group of participants will have more or less extraneous variance than another
group when groups are randomly assigned from the same sample. Shadish, Cook,
and Campbell (2002) reported the benefits of random assignment to generalized
causal inference as: “equating groups before treatment begins, by making alter-
native explanations implausible, by creating error terms that are uncorrelated with
treatment variables, and by allowing valid estimates of error terms” (p. 252).

Another method of controlling extraneous variables is to use blinded proce-
dures. Participants are not informed about the nature or purpose of a study in a
single-blind procedure to minimize participants behaving in reaction to the pur-
pose of the study. In a double-blind procedure neither the participants nor the
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researchers are informed of the treatment conditions that the participants receive.
This procedure helps minimize experimenter expectancy effects and participant
reaction (demand) effects. This procedure usually requires that other people select
groups, administer treatment, and record results. In a triple-blind procedure nei-
ther the participants nor the persons administering the treatment nor those
evaluating the response to treatment know which participants are receiving a
given treatment. A partial-blind procedure is used when the researcher finds out
which treatment conditions are administered just before administering the
treatment conditions.

Deception can be used to shift the participants’ attention away from the actual
purpose of a study so they do not react to the perceived purpose in a certain way.
The use of deception requires careful consideration of ethical standards and
approval from an Institutional Review Board (IRB). There are several other
procedures to control for extraneous variables (see Kirk, 1995; Shadish, Cook, &
Campbell, 2002).

INTERNAL VALIDITY AND EXPERIMENTAL DESIGNS

For over 50 years, Campbell (1957); Campbell and Stanley (1963); Cook and
Campbell (1979); Shadish, Cook, and Campbell (2002); Shadish and Cook
(2009); and Cook and Steiner (2010) have developed sophisticated methods in
experimental and quasi-experimental research. Two of many experimental
methodological areas that have evolved are internal validity and research designs.

Internal Validity

Determining internal validity is assessing whether the A (cause) - B (outcome)
relationship is indeed causal based on the manipulations and measures of the
variables used in a study. This assessment process includes knowing which var-
iable is the cause and which is the effect, which is referred to as ambiguous
temporal precedence (Shadish, Cook, and Campbell, 2002).

An important part of assessing for internal validity is ruling out threats to
internal validity. Thirteen threats to internal validity are presented in Table 4.1.
The first eight threats (THIS MESS) can be assessed and ruled out through the
use of experimental designs, and the last five threats (DREAD) are corrected using
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TABLE 4.1 Threats to Internal Validity: THIS MESS DREAD

Testing effect The treatment effect may be confounded when changes

in posttest scores of participants are influenced by their

experience from taking a pretest.

History An external but concurrent event to the experiment (e.g.,

a hurricane) may affect scores on a dependent measure

that are unrelated to the treatment.

Instrumentation Pretest and posttest scores may change because of a

faulty measurement instrument, irrespective of the

treatment.

Selection (differential) Differences in characteristics of participants assigned

(usually not random) to treatment conditions may

confound attributing the changes in the dependent

variable to the treatment.

Maturation Psychological and physical changes within participants

may occur in an experiment, especially over time. These

participant maturational changes may have an

extraneous effect on the dependent measure.

Experimental mortality

(attrition)

The loss of participants to treatment or measurement of

the dependent variable can produce unbalanced

attribution of the effects of the treatment on the

dependent variable.

Statistical regression This is the phenomenon that extremely high or low group

scores on a variable tend to regress to the mean (get

lower or higher) on a second measurement of the

variable, confounding the treatment effect.

Selection-maturation

Interaction

This is a combination of two threats to internal validity.

For example, some participants in one assigned

treatment condition group may have matured in math

self-efficacy more than participants in another treatment

condition group, and the purpose of the study is to

increase math achievement. Additionally, other

combinations of threats could interact to confound the

treatment effect.

Diffusion of experimental

effect

The treatment may diffuse to the control group over

time because the control group may seek access to the

more desirable treatment.

Rivalry (compensatory) The control group participants may perform beyond

their usual level because they perceive that they are in

competition with the experimental group.
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experimental procedures. Next, we will discuss how experimental designs are used
to rule out threats to internal validity.

Experimental Designs

There are many experimental designs, quasi-experimental designs, and correlation
designs available for use by researchers to execute their studies. Two fundamental
and commonly used experimental designs are discussed first. Explanations are
provided as to how the designs reduce the effects of THIS MESS. Examples of
statistical designs that can be used with the designs are identified. The other five
threats to internal validity (DREAD) are also discussed.

A few rules and symbols are used to describe experimental designs. Each row
represents a group of participants receiving a different experimental condition. An
R designates that the participants were randomly assigned to an experimental
condition (treatment or control). All O’s (observations) represent assessments of
one or more dependent variables. An O before an experimental condition is a pre-
experimental condition assessment, and an O after the experimental condition is a
postexperimental condition assessment. An X stands for a treatment condition
and C symbolizes a control condition.

Equalization of treatments

(compensatory)

A treatment group may receive experimental rewards

that appear more desirable than those received by the

control group participants. Efforts are made by

individuals outside of the experiment to compensate the

control group participants with similar desirable goods.

This would obscure the results of the treatment.

Ambiguous temporal

precedence

A lack of clarity is provided by the researchers as

to which variable occurred first, leading to a question of

which variable is the cause and which is the effect.

Demoralization

(resentfulness)

Lower performance of control group participants on the

dependent measures may result from their belief that

the treatment group is receiving a desirable treatment.

Source: Reprinted by permission from W. E. Martin Jr. & K. D. Bridgmon. (2009). Essential ele-

ments of experimental and quasi-experimental research. In S. Lapan & M. Quartaroli (Eds.),

Research essentials: An introduction to designs and practices (pp. 35�58). San Francisco, CA:

Jossey-Bass.
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Randomized Multiple Treatments and Control with
Posttest-Only Design

R X1 O
R X2 O
R C O

This design is used in the one-way analysis of variance (ANOVA) example in
Chapter 7. The purpose of the study is to compare the effects of psychothera-
peutic treatment (independent variable) on changes in depressive symptoms
(dependent variable). Psychotherapeutic treatment has three experimental con-
ditions: (1) cognitive-behavioral therapy (CBT), (2) interpersonal therapy (IPT),
and (3) control group. Each line in the diagram represents one of the three
groups. The R symbolizes random assignment to each group condition, which
represents a study sample of participants being randomly assigned equally to each
condition. The conditions by groups are represented by X1 (CBT), X2 (IPT), and
C (Control). The O (observation) is the posttest following eight weeks of treat-
ment implementation using the Center for Epidemiological Studies Depression
Scale (CES-D) to measure differential change in depressive symptoms resulting
from the different treatment conditions.

This randomized multiple treatments and control with posttest-only design
strongly benefits from the essential elements of experimental research: (1) random
assignment, (2) control groups, and (3) a manipulated independent variable. The
design does reduce the threats of THIS MES but a concern arises with the last S
(interaction of two threats). For example, more participants may be lost (attrition)
from one or more randomly assigned groups (selection) during the course of an
experiment. This affects the expected outcome of random assignment to make
groups randomly similar to each other at the onset of the study. If there were a
pretest in the design, information could be derived to help explain how the
participants dropping out of the experiment affected changes in the dependent
variable. The interaction effect of attrition and selection would not be an issue if
there were no loss of participants using this design. Without a pretest, it is
impossible to know the causal effects of the independent variable on the
dependent variable because of the disproportionate loss of participants from one
condition compared to the other condition.
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A one-way ANOVA can be used in this design to compare the means of
CES-D scores across the three psychotherapeutic conditions for significant dif-
ferences. A post hoc analysis can be used to assess the differences between the
three pairs of means.

Randomized Multiple Treatments and Control with
Pretest and Posttest Design

R O X1 O
R O X2 O
R O C O

The randomizedmultiple treatments and controlwith pretest and posttest design adds
a pretest to the previous design. So, the participants could be measured on their
depressive symptoms using an equivalent form of the CES-D before administering
the experimental conditions. This reduces the concern about understanding the
effects of interaction between attrition and selection. The pretest scores on depressive
symptoms of people lost during the research process can be used to assist in con-
trolling differences in participants by group on the posttest scores. The design helps
control for all of the threats associated with THIS MESS.

A statistical design that could be used with this design is a 3 3 2 repeated-
measures ANOVA. The 3 represents the independent variable (factor) of psy-
chotherapeutic treatment with three conditions of CBT, IPT, and control. The 2
represents a second independent variable of time with two conditions (pretest and
posttest). This statistical design allows for a comparison of the differences among
the means of CES-D scores across the three experimental conditions. A post hoc
analysis can be used to assess the differences between the three pairs of means.

Also, differences between the means at pretest and posttest can be analyzed.
Finally, the interaction effects of psychotherapeutic treatment and time can be
compared to see if the CES-D average scores differ at conditions of psycho-
therapeutic treatment when compared to pretest and posttest conditions. The
interaction effect analysis could be followed by a simple effects analysis to
determine which levels of the first independent variable interact with which levels
of the second independent variable to produce significant effects on the depen-
dent variable.
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Experimental Research Procedures

Effective experimental designs are used to reduce the threats to internal validity of
THIS MESS. Seven recommended experimental research procedures that aid to
reduce the threats of DREAD (see Table 4.1) are identified next.

1. Use different persons to implement each treatment condition.

2. Arrange treatment conditions so that contact between experimental and
control group participants is minimized.

3. Use single-blind, double-blind, or triple-blind procedures to remove partic-
ipant or experimenter bias.

4. Debrief participants using interviews to assess their experiences and expec-
tations of the treatment conditions.

5. Consider not using experimental rewards.

6. Clearly define treatment conditions.

7. Use past research and theory to guide the evidence of an A (independent
variable) - B (dependent variable) causal relationship.

Quasi-Experimental Designs

The purpose of using quasi-experimental designs is to discover causal relation-
ships similar to using experimental designs. However, quasi-experimental designs
are considered compromise designs because random assignment is not used. It is
important for researchers using quasi-experimental designs to provide carefully
detailed, logical arguments in ruling out alternative explanations (rival hypotheses)
to account for their findings of a causal relationship.

Quasi-experimental designs are improved by (1) adding control or compar-
ison groups, (2) adding pretests and posttests, (3) removing and reinstituting
treatments, (4) adding replications, (5) reversing treatment, and (6) case matching
(Shadish, Cook, & Campbell, 2002). Various statistical procedures also have
been developed that have improved quasi-experimental designs. Propensity scores
are used in case matching to equate individual cases from different populations to
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reduce selection bias. Propensity scores are a weighted composite of measured
covariates that correlate with treatment (Cook & Steiner, 2010; Rosenbaum &
Rubin, 1983). Regression discontinuity designs use cutoff scores to assign partici-
pants to conditions. The cutoff score is a measure obtained before treatment is
undertaken. Then, posttest scores are analyzed with ordinary least squares
regression using the cutoff scores (Shadish, Cook, & Campbell, 2002). Two
commonly used quasi-experimental designs are presented next.

Repeated-Treatment Design with One Group

OBaseline X1O1 X2RemovedO2 X3O3 X4O4

The focus of the research example of repeated-treatment design with one group is to
assess whether the use of friends (support partners) in behavioral weight control
treatment (BWCT) can improve the weight loss outcomes of persons who are over-
weight (this example is used in Chapter 8). A randomly selected group of participants
who are overweight are weighed at baseline before treatment (OBaseline). Then, each
participant’s weight loss is measured and recorded after three months of treatment
with partner support (X1O1 at 3months), after threemonths when partner support is
removed (X2Removed O2 at 6 months), after three months when partner support is
added back to treatment (X3 O3 at 9 months), and after the treatment with partner
support is continued for three months (X4 O4 at 12 months).

The most important result of this design to demonstrate some degree of
causal relationship is measuring the change of weight loss when the treatment is
removed and reinstated. External events (history) and physical/psychological
changes affecting participants may confound the understanding of weight loss as
it relates to the treatment. It would be difficult to tease out confounding without
using a control group and random assignment. Moreover, participants’ awareness
of the cycle of treatment, treatment removal, and observations might behave
uncharacteristically in reaction to the study cycle. Since the same participants are
measured repeatedly over time under various conditions, a repeated-measures
ANOVA would be an appropriate statistic to use in this study. The changes in
mean weight and covariances at baseline, three months, six months, and 12
months would be assessed for differences.
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Nonequivalent No-Treatment Control Group Time-Series Design

NR O1 O2 O3 X O4 O5 O6

NR O1 O2 O3 C O4 O5 O6

There is a control group in the nonequivalent no-treatment control group time-
series design and no removal of treatment. The NR stands for nonrandom
assignment. This design controls for most of the threats to internal validity, THIS
MES. However, an interaction (S) between selection and history may be a
concern. It is possible that one group of participants is affected differently by
external events (history) that influence their scores more on a dependent variable
than the other group. The control group and multiple pretests and posttests in
this design provide valuable information to rule out threats to internal validity.
Visual analyses of graphs are useful for understanding the results. Other statistics
that can be used include repeated-measures ANOVA, randomization tests, and
bootstrapping methods.

Correlational Research Methods

Correlations methods are used in experimental and quasi-experimental designs,
but the primary purpose of correlation research is to explore bivariate relation-
ships, multiple relationships, and predictions among variables. Variables in corre-
lational research are often referred to as X and Y variables. The X variable is called
either an independent or a predictor variable, and the Y variable is identified
as either a dependent or a criterion variable. A bivariate correlation (r ) assesses
the relationship between two variables, and a multiple correlation (R ) assesses the
relationships among more than two variables. A simple linear regression uses a
bivariate correlation to predict the dependent variable (Y ) from the independent
variable (X ). A multiple linear regression uses a multiple correlation to predict a
dependent variable (Y ) from two or more independent variables (Xs).

In Chapter 12, an example is presented about a researcher who assessed
whether lower interest in scientific activities is a better predictor of higher dis-
sertation stress reported by counseling and clinical psychology doctoral students
when compared to their interests in practitioner activities.

The first independent variable in the study is doctoral students’ interest in
scientific activities as measured by the Scientist Scale of the Scientist Practitioner
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Inventory (SPI). The Scientist Scale measures student interests in activities related
to research, statistics and design, teaching/guiding/editing, and academic ideas.

The second independent variable used in the study is students’ interest in
practitioner activities measured using the Practitioner Scale of the SPI. The
Practitioner Scale assesses interests in activities involving therapy, clinical exper-
tise and consultation, and testing and interpretation. Higher scores on the
Practitioner Scale reflect higher interests.

First, we consider only one independent variable (scientific activities) and its
prediction of dissertation stress. An analysis of the extent that students’ interest in
participating in scientific activities (X ) relates and predicts dissertation stress (Y )
could be answered using a bivariate correlation and simple linear regression
model. The model could be written symbolically as Y f (X ), where Y (dissertation
stress) is a function of X (scientific interests). A prediction model can be written
as Y 0 ¼ A 1 B1X1, where Y 0 is the predicted value on the dependent variable
(dissertation stress), A is the intercept, the value of Y when all the X values are
zero, B is the unstandardized regression coefficient assigned to each X value, and X
is the measured value of the independent variable (scientific interests).

A multiple correlation and multiple regression analysis can be used to ana-
lyze the two independent variables with the dependent variable. It can be
written symbolically as Y f (X1, X2). The prediction model would be Y 0 ¼ A 1

B1X1 1 B2X2.

CHOOSING A STATISTIC TO USE FOR AN ANALYSIS

The consideration of five issues can be useful in deciding on a statistic to use in a
particular analysis: (1) the focus of the interplay among variables (e.g., relation-
ships or differences), (2) the number of independent and dependent variables
used in an analysis, (3) the scales of measurements of the dependent variables,
(4) the number and relationships (dependent vs. independent) of participant
groups being compared, and (5) the extent that underlying assumptions of the
statistic are met. These issues are illustrated in relation to statistics covered in this
book (also see Figure 4.1).

One-Way Analysis of Variance

1. Focus of analysis. The purpose of a one-way ANOVA is to compare mean
differences of a dependent variable among groups.

c04 19 June 2012; 9:51:39

RESEARCH AND STATISTICAL DESIGNS � 67



2. Number of independent variables. The descriptor one-way indicates that there
is one independent variable.

3. Scale of measurement of dependent variable. A continuously scaled (interval or
ratio) dependent variable is used in a one-way ANOVA.

4. Relationship of participants’ scores across groups being compared. There are
different participants in the groups being compared and their scores are not

FIGURE 4.1 Issues in Choosing a Statistic to Use for an Analysis
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related (independent) in a one-way ANOVA. This is also referred to as a
between-group design.

5. Underlying assumptions of the statistic being used. The underlying assumptions
of normality, homogeneity of variance, and independence of scores related to
the dependent variable must be met. This applies to original dependent
variables or dependent variables that have been successfully transformed.

Simple Repeated Measures Analysis of Variance

1. Focus of analysis. The purpose of simple RM-ANOVA is to compare mean
differences across groups, conditions, or testing times (i.e., pretest-posttest).

2. Number of independent variables. There is one independent variable used in a
simple RM-ANOVA.

3. Scale of measurement of dependent variable. A continuously scaled (interval or
ratio) dependent variable is used in a simple one-way ANOVA.

4. Relationship of participants’ scores across groups being compared. Scores are
related to (dependent on) each other. Scores on the same or matched par-
ticipants are obtained two or more times. This is also called a within-group
design.

5. Underlying assumptions of the statistic being used. The underlying assumpt-
ions of normality, homogeneity of variance and covariance related to
the dependent variable must be met. These assumptions apply to original
dependent variables or dependent variables that have been successfully
transformed.

Multifactor Analysis of Variance

1. Focus of analysis. The purpose of factorial ANOVA is to assess mean differ-
ences across main effects, interaction effects, and simple effects.

2. Number of independent variables. Factor is another word used for independent
variables, so multifactor denotes that more than one independent variable is
used in the analysis.

3. Scale of measurement of dependent variable. A continuously scaled (interval or
ratio) dependent variable is used in a multifactor ANOVA.
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4. Relationship of participants’ scores across groups being compared. A multifactor
ANOVA can include both scores that are not related (between groups) and
scores that are related (within groups).

5. Underlying assumptions of the statistic being used. Normality, homogeneity of
variance-covariance, and independence of scores related to the dependent
variable must be met. This applies to original dependent variables or
dependent variables that have been successfully transformed.

One-Way Analysis of Covariance

1. Focus of analysis. The purpose of a one-way ANCOVA is to compare mean
differences among groups when the dependent variable has been adjusted for
by one or more covariates.

2. Number of independent variables. The descriptor one-way indicates that there
is one independent variable used in a one-way analysis of covariance.

3. Scale of measurement of dependent variable. A continuously scaled (interval or
ratio) dependent variable is used in a one-way ANCOVA.

4. Relationship of participants’ scores across groups being compared. There are
different participants in the groups being compared, and their dependent
variable scores are not related (independent). This is also referred to as a
between-group design. If a covariate used is a pretest-posttest score, then
there are elements of both between-group and within-group designs.

5. Underlying assumptions of the statistic being used. The underlying assumptions
of normality, homogeneity of variance, and independence of scores related to
the dependent variable must be met. This applies to original dependent
variables or dependent variables that have been successfully transformed.

Kruskal-Wallis One-Way Analysis of Variance

1. Focus of analysis. The purpose of the Kruskal-Wallis (K-W) test is to compare
mean rank differences among two or more groups. The K-W test is a
nonparametric alternative to the one-way ANOVA.

2. Number of independent variables. There is one independent variable used in a
K-W analysis.
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3. Scale of measurement of dependent variable. A discrete-ordinal dependent
variable is used in a K-W analysis. Continuous dependent variables can be
used; however, the observed continuous scores are converted to ranks in the
K-W analysis.

4. Relationship of participants’ scores across groups being compared. There are
different participants in the groups being compared, and their scores are not
related (are independent) in a K-W analysis. This is also referred to as a
between-group design.

5. Underlying assumptions of the statistic being used. The K-W test is a non-
parametric statistical test and is considered distribution-free; therefore, the
assumptions of normality and homogeneity of variance are not necessary.
However, it is important that observations are independent from each other
and there is some degree of continuity of the variable used.

Mann-Whitney U Test

1. Focus of analysis. The purpose of the Mann-Whitney U (MWU) test is to
compare mean rank differences between two groups. The MWU test is the
nonparametric alternative to the independent t-test.

2. Number of independent variables. There is one independent variable used in a
MWU analysis.

3. Scale of measurement of dependent variable. A discrete-ordinal dependent
variable is used in a MWU analysis. Continuous dependent variables can be
used, and the observed continuous scores are converted to ranks in the
MWU analysis.

4. Relationship of participants’ scores across groups being compared. There are
different participants in the groups being compared, and their scores are not
related (are independent). This is also referred to as a between-group design.

5. Underlying assumptions of the statistic being used. The MWU test is a non-
parametric statistical test and is considered distribution-free; therefore, the
assumptions of normality and homogeneity of variance are not necessary.
However, it is important that observations are independent from each other
and there is some degree of continuity of the variable used.
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Friedman Repeated Measures Analysis of Variance

1. Focus of analysis. The purpose of the Friedman RM-ANOVA is to compare
mean rank differences among two or more groups with related scores.
The Friedman RM-ANOVA is the nonparametric alternative to the
RM-ANOVA.

2. Number of independent variables. There is one independent variable used in
the Friedman RM-ANOVA analysis.

3. Scale of measurement of dependent variable. A discrete-ordinal dependent
variable is used in a Friedman analysis. Continuous dependent variables can
be used, but the observed continuous scores are converted to ranks in the
Friedman RM-ANOVA analysis.

4. Relationship of participants’ scores across groups being compared. Scores are related
to (dependent on) each other. Scores on the same or matched participants
are obtained two or more times. This is also referred to as a within-group
statistical design.

5. Underlying assumptions of the statistic being used. The Friedman RM-ANOVA
test is a nonparametric statistical test and is considered distribution-free;
therefore, the assumptions of normality and homogeneity of variance are not
necessary. However, it is important that observations are independent from
each other and there is some degree of continuity of the variable used.

Wilcoxon Matched-Pairs Signed-Ranks Test

1. Focus of analysis. The purpose of the Wilcoxon test is to compare mean rank
differences between two groups with related scores. The Wilcoxon test is the
nonparametric alternative to the dependent t-test.

2. Number of independent variables. There is one independent variable used in
the Wilcoxon test analysis.

3. Scale of measurement of dependent variable. A discrete-ordinal dependent
variable is used in a Friedman analysis. Continuous dependent variables can
be used, but the observed continuous scores are converted to ranks in the
Wilcoxon test analysis.

4. Relationship of participants’ scores across groups being compared. Scores are
related to (dependent on) each other. Scores on the same or matched
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participants are obtained two times. This is also referred to as a within-group
statistical design.

5. Underlying assumptions of the statistic being used. The Wilcoxon test is a
nonparametric statistical test and is considered distribution-free; therefore,
the assumptions of normality and homogeneity of variance are not necessary.
However, it is important that observations are independent from each other
and there is some degree of continuity of the variable used.

Pearson’s Product Moment Coefficient of Correlation (r)

1. Focus of analysis. The purpose of the Pearson correlation coefficient is to
analyze the relationship between two variables.

2. Number of independent variables. There are two variables used in the analy-
sis. It is not necessary, but one variable may be called an independent variable
(X ) or predictor variable and the other variable may be called a dependent
variable (Y ) or criterion variable.

3. Scale of measurement of dependent variable. The two variables used in
the Pearson correlation coefficient analysis are continuously scaled (interval
or ratio).

4. Relationship of participants’ scores across groups being compared. Scores on the
two variables are paired on the same participants, and therefore the scores are
related to (dependent on) each other.

5. Underlying assumptions of the statistic being used. The Pearson correlation
coefficient requires meeting normality and homogeneity in arrays that are the
residual variance of a Y conditional to a specific X.

Multiple Regression Analysis

1. Focus of analysis. The purpose of a multiple regression analysis (MRA) is to
analyze the extent that two ormore independent variables relate to a dependent
variable.

2. Number of independent variables. There are two or more continuously scaled
independent (predictor) variables used in the analysis.
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3. Scale of measurement of dependent variable. The dependent variable is also
continuously scaled (interval or ratio) in an MRA analysis.

4. Relationship of participants’ scores across groups being compared. Participants
have scores on all of the variables used in the MRA, and therefore the scores
are related to (dependent on) each other.

5. Underlying assumptions of the statistic being used. The underlying assumptions
and other issues of an MRA to assess include normality, homoscedasticity,
linearity, independence of errors, and multicollinearity.

SUMMARY

Research and statistical designs can be conceptualized as having the purpose to
maximize treatment variance, minimize error variance, and control extraneous
variance. The basic components of experimental, quasi-experimental, and cor-
relational research designs were discussed in this chapter. Statistical methods used
with various research designs were covered. Threats to internal validity were
identified with examples of experimental and quasi-experimental designs. Finally,
issues to consider in choosing statistics for research problems were presented.

PROBLEM ASSIGNMENT

Go to the companion website for additional examples of formulating experi-
mental conditions and procedures, reducing imprecision in measurement, and
controlling extraneous experimental influences. Use the information presented in
this chapter to guide you as you complete the assignment.

KEY TERMS

ambiguous temporal precedence

bivariate relationships

blinded procedures

build the extraneous variable into

the design

controlling extraneous variance

correlation designs

criterion variable

deception
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dependent (outcome) variables

double-blind procedure

DREAD

eliminate an extraneous variable

error of measurement

errors

experimental designs

experimental research procedures

extraneous variables (nuisance

variables)

independent (cause) variables

internal validity

matching participants

maximizing experimental variance

MaxMinCon

minimizing error variance

multiple linear regression

multiple relationships

nonequivalent no-treatment control

group time-series design

observed score

operationally defined

partial-blind procedure

predictor variable

propensity scores

psychotherapeutic treatment

purposive sampling

quasi-experimental

quasi-experimental designs

random assignment

random error

random sampling

randomized multiple treatments and

control with posttest-only design

randomized multiple treatments

and control with pretest and

posttest design

randomly assigning

regression discontinuity designs

repeated-treatment design with one

group

rival hypotheses

sampling error

simple linear regression

single-blind procedure

standard error of the mean

statistically controlled

systematic error

THIS MESS

time

treatment adherence

treatment delivery

treatment integrity (treatment fidelity)

treatment receipt

triple-blind procedure

true score

c04 19 June 2012; 9:51:40

RESEARCH AND STATISTICAL DESIGNS � 75



c04 19 June 2012; 9:51:40



Chapter 5

INTRODUCTION TO

IBM SPSS 20

LEARNING OBJECTIVES

� Become familiar with the start-up procedures of IBM
SPSS 20.

� Learn navigational skills in the IBM SPSS 20 program.

� Learn to name and define variables.

� Practice entering data.

� Execute basic computational procedures using IBMSPSS 20.
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The focus of this chapter is to introduce you to the basic steps of setting
up and manipulating data in IBM SPSS 20. It is important to follow the
steps and take your time in setting up your data. It takes more time to set

up your data than it does to run the analyses. The accuracy of the results is highly
dependent upon the exactness of the data entered.

Data analysis commands used in this book are for use in IBM SPSS 20 for
Windows. Most SPSS analysis commands have remained consistent across SPSS
versions; however, students using older versions of SPSS may need to make
modifications to the commands. IBM SPSS 20 can be operated both through pull-
down menus and by syntax commands. Syntax commands are based on SPSS
language that is written commands made by a user to generate statistical results.
The pull-down menu is similar to many Windows applications; therefore, it is user
friendly. If you select a particular option and then determine it is not what you
were looking for, you can use the cancel feature. Basic applications for IBM SPSS
20 are described in this chapter, but you will learn more advanced applications as
they are applied to statistics presented in the following chapters of the book.

When entering data or manipulating existing data sets in IBM SPSS 20, make
sure to save often and use titles for the data that make sense for the data set. For
example, you may wish to date the data set and include descriptive comments that
will allow you to know what each data set is for future use. IBM SPSS 20 includes
a Help feature that will assist users to obtain more information about commands
and output. Next, we will go step-by-step in naming and defining variables in a
data set (Variable View), enter data (Data View), and conduct some basic analyses.

Start-Up Procedures in IBM SPSS

1. Clickon theStartbutton (bottomleft of your screen). clickonPrograms. click
on IBM SPSS 20 or the version you are using. This start-up procedure may vary
with computers based on how the programmanager configured the program files.

2. When opening the IBM SPSS 20 program, the initial screen will provide
several options (see Figure 5.1). The Type in data feature is the icon used to
enter data for the first time. (After data has been saved, the default option of
Open an existing data source is used to retrieve data. Also, you can click
twice on a saved data set and open it.) Click on Type in data. click OK.
This produces a spreadsheet (Data View) with the title at the top left, Unti-
tled1 [DataSet0] - IBM SPSS Statistics Data Editor (see Figure 5.2). The
Data View spreadsheet is where you will enter data.
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FIGURE 5.2 Data View Screen of IBM SPSS 20

FIGURE 5.1 IBM SPSS 20 Initial Screen
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THE IBM SPSS 20 DATA VIEW SCREEN

The Data View screen has various options. The first line on the toolbar is the
name of your data set. This is what the data set is named when the Save As
feature is used. The next line is called the menu bar. This menu bar offers several
options that offer a pull-down feature. This menu bar is primarily used for
making pull-down command analyses, but also includes the Help tool. The third
line is the toolbar and includes icons. Once the mouse curser is placed over an
icon, the function of the tool is briefly described to the user. The majority of the
screen is the spreadsheet for entering data. Scroll bars are available vertically and
horizontally to maneuver around the screen.

Along the left side of the screen spreadsheet are the row (case) numbers. The
rows usually represent the participants or cases in a study. It is important
to remember that these numbers are not numbers that stay with participants but
are row numbers. A separate variable labeled ID can be created to consistently
identify participants; that avoids confusion with the row or case number.

At the top of the screen spreadsheet are the columns with the abbreviation
var that stands for variable. Typically, the study variables are represented as
columns in a data set.

At the bottom left-hand corner of the Data View screen are two tabs. One
tab is titled Data View where the data is entered. The other tab is called Variable
View and is used to name and define variables. Click on the Variable View tab
and we will name and define variables before entering data (see Figure 5.3).

NAMING AND DEFINING VARIABLES IN VARIABLE VIEW

Naming and defining variables is important for entering data, analyzing data, and
interpreting output after conducting an analysis. We will first name and define
the variables used in this chapter. There are 10 variables that you will be naming
and defining.

Entering Variables

Variable ID

1. In the Variable View screen, click on Row 1 of the Name column. The box
will be highlighted once it is clicked.

2. In the cell under Name in Row 1, type in the variable’s name, ID.

c05 18 June 2012; 18:52:56

80 � CHAPT E R 5



3. Press the Tab key. This is the Type column. Now there are three blue dots in
this cell. The pull-down menu for TYPE can be used by clicking on the three
dots to specify the type of variable. For this variable (ID numbers of parti-
cipants), use the default (Numeric). You see that there are several options for
Variable Type. If you click on the Help button, the Variable Types will be
explained. We use primarily Numeric and String (variable values that are not
numeric) Variable Types in this book. However, the Variable Type Date will
be used in this introduction to IBM SPSS 20 chapter.

4. Press theTab key again. This is theWidth column. IBMSPSS 20 defaults to 8;
however, in the cell, arrows are provided to increase or decrease the width of the
variable’s name.The desiredwidth can also be enteredby keying in the number.
Obviously, the default width of 8 is sufficient for the two-letter name ID.

5. Press the Tab key. This is the Decimals column. SPSS 20 defaults to
2 decimal places. Again, this can be changed with the arrows or keying in
the desired number of decimal places. If working with data that do not

FIGURE 5.3 Variable View Screen of IBM SPSS 20
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include decimal places, decrease the Decimals cell to zero, as this will
eliminate unneeded zeros in the decimal places. Change this to zero since
the ID number does not need zeros.

6. Press the Tab key. This is the Label column that shows the identity of the
variable in data output. Keep labels short but understandable so you can
recognize a variable in the output. We will not use a label for the ID variable.

7. Press the Tab key. This is the Values column. Some variables will be cat-
egorized for analyses. For example, if Gender is used as a variable, this is the
place when male and female would be labeled. Leave this blank since we are
not categorizing the variable ID.

8. Press theTab key. This is theMissingValues column that allows a user to enter
values or ranges of values defined asmissing data. IBMSPSS 20 defaults at none.
By selecting none for this column, it allows missing data to be identified when
conducting analyses. Leave theMissing Values cell blank for the ID variable.

9. Press the Tab key. This is the Columns column. IBM SPSS 20 defaults at
an 8 character width for each column. This may be changed by using
the arrow keys or keying in the desired column size. Leave the width at the
default of the ID variable.

10. Press the Tab key. This is the Align column. IBM SPSS 20 will default to
right. However, left, right, or center are all options. Leave the default
of right for this variable.

11. Press the Tab key. This is the Measure column. The scale of measurement
for each variable is selected here. The options of Scale (default), Ordinal, or
Nominal are available. The Scale option is used for continuous-scaled
variables, including either ratio- or interval-scaled variables such as time
(ratio) or standardized achievement test score (interval). The Ordinal scale
option is used for ranked variables such as a Likert scale. The Nominal
scale is for data used as counts in mutually exclusive categories such as
religious affiliation. Leave this variable as the default of Scale.

12. Press the Tab key. This is the Role column. IBM SPSS 20 defaults at Input.
An Input variable is usually used as an independent or predictor variable.
A Target variable is used as a dependent or criterion variable. The Both option
means it may be used as either an Input or a Target variable in analyses.
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Partition means that the variable will be used to partition data into separate
samples for training, testing, and validation. Role assignment is used only when
analyses support the role assignment and otherwise does not affect analyses.
Wewill not need to use role assignments for the analyses in this book.However,
it is recommended that you use the role assignment of Input for independent
or predictor variables andTarget for dependent or criterion variables.Use Input
for all other variables. Leave the default of Input for the variable ID.

13. Press the Tab key. The curser is now back at NAME and is ready for the
next variable.

Variable returndate

1. In the cell under Name in row 2, type in returndate (not in italics).

2. Click on Type; choose Date on the left, and to the right click on mm/dd/yy
and click OK. Remember you must enter the data dates in the same format
as mm/dd/yy.

3. Use the default definitions in the rest of the row.

Variable status

1. In the cell under Name in row 3, type in status.

2. Type is Numeric, Width should be 8, and Decimals should be 0.

3. Under the column Label in row 3, type in counseling students and counseling
professionals.

4. Click on the cell under the column Values. You are going to type in the
categories for the variable status that will tell the SPSS program what values
represent. Beside Value type in 1, and beside Label type in student; then click
on the Add button. Then, click on Value again; type in 2 and beside Label
type in professionals and click on the Add button and then the OK button.

5. Leave as is (the default values) for Missing, Columns, and Align.

6. In the Measure column, choose nominal. Nominal-scaled variables have
categories that have no intrinsic order.

7. In the Role column, select Input since status will be used as an independent
variable in some analyses.
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Variable gender

1. In the cell under Name in row 4, type in gender.

2. Type is Numeric, Width should be 8, and Decimals is 0.

3. In the Label column, label the variable as sex.

4. In the Values column, assign the following values for gender in the blue
box: Value¼ 1; Label¼Male.Click Add. Repeat for Female gender with
Value¼ 2; Label¼ Female.Click Add.Click OK.

5. Missing is None, Columns¼ 8, and Align¼Right.

6. In the Measure column, change the level of measurement to Nominal, and
the Role column is Input.

Variable age

1. In the cell under Name in row 5, type in age.

2. Leave Type¼Numeric, Width¼ 8, and change the Decimals cell to zero.

3. Keep all other columns to default except for Measure (change to Scale).

Variable ethn

1. In the cell under Name in row 6, type in ethn.

2. Width¼ 8 and change the Decimals column to zero.

3. In the Label column, label the variable as ethnicity.

4. In the Values column, assign the following values for Ethnicity: Value¼ 1;
Label¼ af amer.Click Add. Value¼ 2; Label¼ as amer.Click Add.
Value¼ 3; Label¼ eur amer.Click Add. Value¼ 4; Label¼ hisp amer.
Click Add. Value¼ 5; Label¼ nat amer.Click Add. Value¼ 6; Label¼
Other.Click Add.Click OK.

5. Missing¼None, Columns¼ 8, Align¼Right, Measure¼Nominal, and
Role¼ Input.

Variable ethnicother

1. The variable ethnicother in row 7 has responses that are words, so select String
under Type.
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2. Since the responses are words, there is a need to expand the characters for this
variable, so type in 25 in the cell under the column Width.

3. For Decimals the cell should be zero, and under Label type in other ethnicity
description.

4. The other columns should be: Values¼None,Missing¼None, Columns¼
8, Align¼ Left,Measure¼Nominal, and Role¼ Input.

Variable counconfid

1. In the cell under Name in row 8, type in counconfid.

2. The cell under Type¼Numeric, Width¼ 8, and change the Decimals
column to zero.

3. In the Label column, label the variable as confidence as a counselor.

4. In the Values column, assign the following values for counseling confidence.
Value¼ 1; Label¼ Strongly Disagree.Click Add. Value¼ 2; Label¼
Disagree.Click Add. Value¼ 3; Label¼ Somewhat Agree.Click Add.
Value¼ 4; Label¼Agree.Click Add. Value¼ 5; Label¼ Strongly Agree.
Click Add.Click OK.

5. The other columns should be: Missing¼None, Columns¼ 8, Align¼
Right, Measure¼Ordinal, and Role¼Target. Target is used because the
variable (counconfid) is a dependent variable in the analyses.

Variable micskill

1. Type in the name micskill in the cell in row 9 under the column Name. This
is a subscale called Micro Counseling Skills of the Counseling Self-Estimate
Inventory (COSE).

2. The columns Type¼Numeric, Width¼ 8, Decimal¼ 0, and under Label
type in COSE Confidence in Executing Microskills.

3. The other columns should be: Values¼None,Missing¼None, Columns¼
8, Align¼Right, Measure¼ Scale, and Role¼Target.

Variable dealdiff

1. Type in the name dealdiff in the cell in row 10 under the column Name.
This is a subscale called Dealing with Difficult Clients of the Counseling
Self-Estimate Inventory (COSE).
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2. The columns Type¼Numeric, Width¼ 8, Decimal¼ 0, and under Label
type in COSE Dealing with Difficult Client Behaviors.

3. The other columns should be:Values¼None,Missing¼None,Columns¼ 8,
Align¼Right,Measure¼ Scale, and Role¼Target.

4. Check the accuracy of the variables entered. Also check your work with
Figure 5.4.

ENTERING DATA

Once variables have been correctly named and defined in Variable View,
click on the Data View tab at the bottom left of the Variable View screen. You
will see the variable names that you created at the top of the columns in
the Data View screen. You will now be able to enter data for the variables
created using the data in Figure 5.5. Consider these recommendations when
entering data.

FIGURE 5.4 Variables Named and Defined in Variable View
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1. The return key moves the curser down the spreadsheet. The tab key moves
the curser across the spreadsheet.

2. If you make an error, click on the cell, delete, and retype the correct value.

3. Check your entered data for correctness and Save As Chapter5Data.

EXAMPLES OF BASIC ANALYSES

Commands are provided next using the pull-down menus for basic statistical
analyses with output produced.

1. Frequency Analysis (good for ungrouped data).

� Go to the top of the window and click on Analyze.Descriptive
Statistics.Frequencies.

FIGURE 5.5 Example Data in Data View
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� In the box on the left, click on and highlight ethnicity [ethn] and then, using
the arrow to the right, click it over to the space underVariable(s). (If you want
to stretch the Frequencies screen out, you can place your cursor to the left side
of the box, left click, and move the end of the box left. This will allow you to
see the fuller description of the variables. Another way is to place your cursor
on the variable and it will show the full name of the variable.)

� Now click on the button called Charts. Select Bar charts as the type of
chart and Percentages as the chart value.Continue.OK. This will
produce a frequency table and bar chart for the variable (see Table 5.1 and
Figure 5.6).

2. Explore Analysis (useful for grouped data and univariate data screening).

� Go to the top of the window and click on Analyze.Descriptive
Statistics.Explore.

� Click over the Confidence in Executing Microskills [micskill] into the
Dependent List.

� Click over Counseling Students and Counseling Professionals [status] to the
Factor List.

TABLE 5.1 Frequencies Table of Ethnicity

Frequencies

Statistics

ethnicity

N Valid 20

Missing 0

ethnicity

Frequency Percent Valid Percent Cumulative Percent

af amer 1 5.0 5.0 5.0

as amer 2 10.0 10.0 15.0

eur amer 11 55.0 55.0 70.0

Valid hisp amer 2 10.0 10.0 80.0

other 4 20.0 20.0 100.0

Total 20 100.0 100.0
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� Under Display keep the default at Both.

� To the upper right of the window are three buttons called Statistics,
Plots, and Options. Click on Plots and choose Stem-and-leaf and
Histogram under Descriptive. Also, choose Normality plots with tests,
click Continue, and then click OK. This produces valuable output that is
used for univariate data screening. The output provides results by
grouping since we used status as a grouping variable. There are several plots
and a table of information in the Explore output. The descriptive statistics
table only is presented in Table 5.2.

3. Independent t-test. An analysis will be conducted to see if there is a significant
difference (α¼ 01) in the means of dealing with difficult client behaviors
between the counseling students and counseling professionals. A high score
on the dependent variable dealdiff means more confidence in dealing with
difficult client behaviors.

FIGURE 5.6 Bar Chart of Ethnicity
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TABLE 5.2 Descriptive Statistics of Status

Descriptives

counseling students and counseling professionals Statistic Std. Error

Mean 55.27 2.435

95% Confidence Interval for Mean Lower Bound 49.85

Upper Bound 60.70

5% Trimmed Mean 55.58

Median 57.00

Variance 65.218

student Std. Deviation 8.076

Minimum 40

Maximum 65

Range 25

Interquartile Range 13

Skewness 2.753 .661

Kurtosis 2.311 1.279

COSE Confidence in

Executing Microskills

Mean 61.33 2.369

95% Confidence Interval for Mean Lower Bound 55.87

Upper Bound 66.80

5% Trimmed Mean 61.76

Median 61.00

Variance 50.500

professional Std. Deviation 7.106

Minimum 46

Maximum 69

Range 23

Interquartile Range 9

Skewness 21.195 .717

Kurtosis 2.053 1.400
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� Go to the top of the window and click on Analyze.Compare Means.
Independent-Samples T Test.

� Click over counseling students and counseling professions [status] under
Grouping Variable (independent variable). Click on button called Define
Groups. Type the number 1 (which represents counseling students)
beside Group 1, and type the number 2 (which represents counseling
professionals) beside Group 2; click Continue.

� Then click over COSE Dealing with Difficult Client Behaviors [dealdiff]
under Test Variables(s) (dependent variables). Click OK and the output
is produced.

(It is also possible to click over several variables under Test Variable(s)
and it will run a separate independent t-test on each dependent variable.)

The output (Table 5.3) shows that t¼24.406 with a significant prob-
ability (Sig. [2-tailed]) equal to p¼ .000. Since p¼ .000 is less than the alpha
criterion of .01, the rule is to reject the null hypothesis of no difference, so
there is a significant difference. The mean of dealing with difficult client
behaviors X ¼ 24:64 is for students and X ¼ 34:78 for professionals. Thus,
the counseling professionals showed more confidence in dealing with difficult
client behaviors than did the counseling students.

4. Bivariate correlational matrix. Next we look at creating a matrix of correlation
coefficients among three continuously scaled variables: age, confidence in
executing counseling microskills, and confidence in dealing with difficult
client behaviors. We want to determine if age is significantly correlated
(α¼ .05) to the other two variables.

� Click Analyze.Correlate.Bivariate.

� Click over age, micskill, and dealdiff to Variables.

� Click on Pearson and click OK.

You can see that the correlation and significance between age and
COSEConfidence inExecutingMicroskills is r¼ .420, p¼ .065, and age andCOSE
Dealing withDifficult Client Behaviors is r¼ .663, p¼ .001 (see Table 5.4). Age
is significantly correlated to COSE Dealing with Difficult Client Behaviors since
the p¼ .001 is less than the α¼ .05 and the rule is to reject the null of no
relationship when the computed probability is less than the chosen α criterion.
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TABLE 5.3 An Independent t-Test Analysis

Group Statistics

counseling students and
counseling professionals N Mean Std. Deviation

Std. Error
Mean

COSE Dealing with Difficult Client Behaviors student 11 24.64 5.334 1.608

professional 9 34.78 4.842 1.614

Independent Samples Test

Levene’s
Test for

Equality of
Variances

t-test for Equality
of Means

95%
Confidence

Interval of the
Difference

F Sig. t df
Sig.

(2-tailed)
Mean

Difference
Std. Error
Difference Lower Upper

COSE Dealing with

Difficult Client

Behaviors

Equal variances

assumed

.025 .877 24.406 18 .000 210.141 2.302 214.977 25.305

Equal variances

not assumed

24.451 17.764 .000 210.141 2.279 214.933 25.350
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5. Simple scatter plot. We now look at a scatter plot showing graphically the
relationship between age and COSE Dealing with Difficult Client Behaviors
(see Figure 5.7).

� Click Graphs.Legacy Dialogs. Scatter/Dot.

� Click on the chart to the left of Simple Scatter and click on the Define
button.

� Click over age to the Y Axis and COSE Dealing with Difficult Client
Behaviors to the X Axis and click OK.

The scatter points are forming somewhat of an oval around a straight line
that can be visualized starting at the bottom left corner of the rectangle and
extending to the upper right corner of the rectangle.

Creating a Composite Summed Variable of Two Variables

1. Often researchers combine variables by summing them into a composite
variable. We are going to add together the scores of COSE Confidence in

TABLE 5.4 Correlation Matrix of Age, COSE Confidence in Executing
Microskills, and COSE Dealing with Difficult Client Behaviors

Correlations

age

COSE
Confidence
in Executing
Microskills

COSE Dealing
with Difficult

Client
Behaviors

age Pearson Correlation 1 .420 .663*

Sig. (2-tailed) .065 .001

N 20 20 20

COSE Confidence

in Executing

Microskills

Pearson Correlation .420 1 .419

Sig. (2-tailed) .065 .066

N 20 20 20

COSE Dealing

with Difficult

Client Behaviors

Pearson Correlation .663** .419 1

Sig. (2-tailed) .001 .066

N 20 20 20

*Correlation is significant at the 0.01 level (2-tailed).
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Executing Microskills and COSE Dealing with Difficult Client Behaviors and
create a combined variable (composite) from the two variables.

� Click Transform.Compute Variable. under Target Variable type
COSEComposite.

� Click over the variable COSE Confidence in Executing Microskills under
Numeric Expression and click on the button that is a plus sign (1).

� Click over the variable COSE Dealing with Difficult Client Behaviors under
Numeric Expression.

� Click the OK button and click out of the output created; look at the end
of the columns on Data View and you will see a new column created
called COSEComposite. This column represents the sum of the two vari-
ables (see Figure 5.8).

FIGURE 5.7 Scatter Plot of Age and COSE Dealing with Difficult Client
Behaviors
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Creating a Composite Mean Variable of Two Variables

1. Sometimes it is useful to create a composite variable of the averages (means)
of several variables. We will create the composite mean of the scores of COSE
Confidence in Executing Microskills and COSE Dealing with Difficult Client
Behaviors.

2. Click Transform.Compute Variable. under Target Variable type
COSECompositeMean. (If you information on the page from the previous
analysis, press the Reset button.)

3. Under Function group:, click on All ., then under Functions and Special
Variables, scroll down until you find Mean and click on it.

4. Using the arrow pointing up, click Mean to the Numeric Expression box.
Under Numeric Expression, you will see MEAN(?,?).

5. Click over COSE Confidence in Executing Microskills under Numeric
Expression. click to the right of the comma (that has to be in the expression)

FIGURE 5.8 COSE Composite Sum Variable
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and delete the questionmark. then click over the variableCOSEDealing with
Difficult Client Behaviors to Numeric Expression.

6. Click the OK button and click out of the output created; look at the end of
the columns on Data View and you will see a new column created called
COSECompositeMean. This column represents the mean of the scores of two
variables (see Figure 5.9).

EXAMPLES OF MODIFYING DATA PROCEDURES

1. Inserting a new variable intoDataView. (This can also be done inVariableView.)

� In Data View, right click on the column where you want to insert the new
variable to its left.

� Click Insert Variable.

� The new variable will be located to the left of the column you right clicked on.

FIGURE 5.9 COSE Composite Mean Variable
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2. Inserting a case in Data View.

� Click on Data View.

� Right click on the row you want a new row (case) to be above.

� Click Insert Cases.

� The new case will be above the highlighted row.

3. Sorting cases in ascending or descending order by a variable.

� Click Data. Sort Cases.Click over the variable to wish to sort and
click on Ascending. click OK.

� To return the rows in the original order, click Data. Sort Cases.
Deselect the variable you sorted and click over ID under Sort By and click
on Ascending; click OK.

� Another option to sort data is to right click on the variable column in
Data View, and click on either Sort Ascending or Sort Descending. To
return the data set to its original order, sort the ID back to Ascending.

4. Square-root transformation of a variable.

� Click Transform.Compute Variable. Under the Target Variable, type
the variable’s name preceded by sq in the title for easy identification in
your data set that you wish to transform, such as sqcounconfid.

� Go to Function group: and select Arithmetic.

� Under Functions and Special Variables:, click Sqrt under Numeric
Expression and will look like SQRT(?). click over variable counconfid;
click OK. The new variable sqconfidence will show up on Data View as the
last column.

SUMMARY

Data in IBM SPSS 20 can be entered and manipulated in various ways. Following
the procedural steps outlined in this chapter provides a starting point for you to
familiarize yourself with the program. You will be enhancing your knowledge and
use of IBM SPSS 20 as you learn about various statistical procedures presented in
this book through problem applications.
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PROBLEM ASSIGNMENT

Go to the companion website for review questions on using IBM SPSS 20. Use
the information presented in this chapter to guide you as you complete the
assignment.

KEY TERMS

ascending

bivariate correlational matrix

chart

data

descending

descriptive statistics

Explore Analysis

Frequency Analysis

IBM SPSS 20

independent t-test

nominal

ordinal

scale

scatter plot

spreadsheet

variables
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Chapter 6

DIAGNOSING STUDY DATA

FOR INACCURACIES

AND ASSUMPTIONS

LEARNING OBJECTIVES

� Understand the reasons for diagnosing a data set for accuracy
of data, missing data, univariate outliers, and underlying
assumptions related to parametric statistics.

� Examine the methods used to diagnose study data for
inaccuracies and assumptions.

� Execute procedures using IBM SPSS to conduct an
assessment of data accuracy, missing data, univariate
outliers, and underlying assumptions.

� Conduct procedures to modify a data set using data
diagnostic results, and interpret the outcomes.
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The purpose of this chapter is to explore and implement methods for
data screening a data set before conducting the main analyses related to
the research hypotheses. Data diagnosis concepts, methods, and proce-

dures are implemented to prepare a data set for analyses.
The purpose of data diagnostics (also called exploratory data analysis, data

screening, or data preparation) is to protect the integrity of inferential statistical
tests (Tabachnick & Fidell, 2007). Researchers want their data to be accurate,
complete, and in compliance with the underlying assumptions of the statistics
being used. This screening procedure is part of step 5 of the hypothesis-testing
process and involves preparing one’s data for statistical analyses to accurately
answer questions about the research questions and hypotheses. Data diagnostics
methods will be examined by analyzing data related to a hypothetical research
example. The data to be entered into IBM SPSS are at the end of this chapter.

RESEARCH EXAMPLE

A researcher wants to implement a new and unique mindfulness training program
to see if it is more effective in increasing mindfulness attention awareness when
compared to a traditional mindfulness training program. The dependent variable
mindfulness attention awareness is defined as the presence or absence of attention
to and awareness of what is occurring in the present (Brown & Ryan, 2003). The
dependent variable is measured using the Mindfulness Attention and Awareness
Scale (MAAS). The norm group mean and standard deviation on the MAAS is
X ¼ 64, and SD¼ 9.9. Forty participants are randomly assigned equally to each
of the two conditions. Participant information related to various potential
extraneous variables was obtained prior to assignment to a condition. The par-
ticipants were compared by group on this information to verify that randomi-
zation did produce similar groups on key extraneous variables. All participants
received six weeks of training and were compared between groups at the end of
treatment using the MAAS scores following the development of a randomized
posttest-only control group design.

Detecting Erroneous Data Entries

Obviously, the integrity of your data analyses can be significantly compromised
by entering wrong data. It is most desirable to enter and check your own data by
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comparing the original data to the data in the computer program spreadsheet.
Having a trusted colleague replicate your data entry and checking procedures
is ideal.

When someone else is entering your data, you need to train and trust them as
well as monitor their data entry. If you cannot check all of their data entry, then,
at the minimum, check one or more random subsets of the data set.

Data that are downloaded, imported, or mined from another data source also
need to be reviewed carefully compared to the original source of data. It is not
uncommon to have data accuracy problems arise from different formats used by
various software programs or even computer platforms.

After the data have been inputted or imported, one can conduct some
screening analyses to assess whether scores on variables are in the expected ranges.
Additionally, a determination can be made as to whether the frequencies, means,
and standard deviations seem plausible.

Go to theData View in the example data set you created and follow the these
three commands:

1. At the top of the screen, choose Analyze.Descriptive Statistics.
Frequencies.

2. Click over TotalMAAS and Condition to under Variable(s):

3. Click on the Statistics button. click on Mean and Std.deviation. click
on Continue and click OK.

A review of the output table called Statistics (Table 6.1) shows there is an
unusually high standard deviation of 72.26442 (the group norm standard

TABLE 6.1 Mean and Standard Deviation of
MAAS Scores

Statistics
TotalMAAS

N Valid 39

Missing 1

Mean 64.4359

Std. Deviation 72.26442
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deviation is 9.9). Also, it is unusual to have a standard deviation value higher than
the mean.

Looking at the Frequency Table (Table 6.2) also in the output, we see there is
a number listed that is 500, which is considerably higher than the next-highest
number of 86. Suppose that a review of the original data set shows that the 500
was inputted inaccurately and should be 50. The incorrect number of 500 also
inflated the standard deviation out of the realm of plausibility.

Click out of the frequency table output (don’t save the output unless you
want to). Go to Data View and correct the incorrect value accordingly; save the
corrected data set as anew data file, called Data after data correction.

TABLE 6.2 Frequencies of MAAS Scores

TotalMAAS

Frequency Percent Valid Percent Cumulative Percent

Valid 37.00 1 2.5 2.6 2.6

38.00 1 2.5 2.6 5.1

40.00 1 2.5 2.6 7.7

43.00 2 5.0 5.1 12.8

44.00 1 2.5 2.6 15.4

46.00 4 10.0 10.3 25.6

47.00 2 5.0 5.1 30.8

48.00 1 2.5 2.6 33.3

50.00 1 2.5 2.6 35.9

51.00 2 5.0 5.1 41.0

52.00 5 12.5 12.8 53.8

53.00 1 2.5 2.6 56.4

54.00 2 5.0 5.1 61.5

56.00 2 5.0 5.1 66.7

57.00 5 12.5 12.8 79.5

58.00 1 2.5 2.6 82.1

59.00 1 2.5 2.6 84.6

60.00 1 2.5 2.6 87.2

61.00 1 2.5 2.6 89.7

63.00 1 2.5 2.6 92.3

85.00 1 2.5 2.6 94.9

86.00 1 2.5 2.6 97.4

500.00 1 2.5 2.6 100.0

Total 39 97.5 100.0

Missing System 1 2.5

Total 40 100.0
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ID # Incorrect Value New Corrected Value

500 50

Identifying and Dealing with Missing Data

Missing data is a rather common and annoying phenomenon. When data is
missing from a data set, there is a potential bias in your data that statistical
analyses may ignore because of hidden causes of the missing data. For example, if
persons aged 60 to 65 consistently refused to provide their age in a community
survey, the results could be biased.

Reasons missing values exist in a data set include participants who don’t
respond to some items or sections of items, participants who discontinue their
participation in a study (attrition), and data management mistakes. A researcher
does not want any missing data, but the best type of the bad to have is missing
completely at random (MCAR). The MCAR missing data is unpredictable with no
systematic pattern. The worst type of missing data to have in a data set is missing
not at random (MNAR). There is a systematic cause for MNAR missing data, such
as patterns of not answered questions for a reason (e.g., purposeful avoidance
of embarrassing questions) or a consistent error in data collection or recording
methods. MNAR missing data creates hidden rival explanations in interpreting a
data set.

One way to determine the impact of missing data is to create dummy vari-
ables. For example, a dummy variable might be created for variable A by applying
the code 0 to represent each case with no missing data on variable A and using the
code 1 to represent all cases with missing data on variable A. This dummy var-
iable has two groups of cases: (1) those cases with no missing data, and (2) those
cases with missing data. This variable can be used as an independent variable on
variable B to see if there is a significant difference on variable B comparing the no
missing data group to the missing data group using an independent t-test or one-
way ANOVA and assessing the effect size of η2. Other variables (C, D, E, etc.)
could also be analyzed for significant differences using the dummy variable as the
independent variable. Significant differences on the variables between the no
missing data group and the missing data group would suggest there is a systematic
effect of the missing data. A software program called IBM SPSS Missing Values
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diagnoses the missing values in a data set and estimates new values to replace the
missing values. Another program, IBM SPSS AMOS (Analysis of Moment
Structures), computes maximum likelihood statistics in the presence of random
missing data.

There are several ways of handling missing data. Stevens (1996) states,
“Probably the ‘best’ solution is to make every attempt to minimize the problem
before and during the study” (p. 33).

Deleting cases that have a large number of missing data is one option. Hair,
Black, Babin, Anderson, and Tatham (2006) offer the guideline that “missing data
under 10% for an individual case or observation can generally be ignored, except
when the missing data occurs in a specific nonrandom fashion” (p. 55). The
deletion of cases may be more attractive when only a small subsample of random
cases of a large sample of cases has missing data (Tabachnick & Fidell, 2007).

Deleting variables with substantial missing data is another option. Again,
deletion of variables is more appealing if the missing data are random and the
variables being deleted are not critical to the analysis.

Deletion of cases or variables is not the ideal solution. Deleting cases means
smaller samples and potentially a less representative sample of the population they
were drawn from. Deleting variables eliminates important information from a
study that a researcher planned to examine.

More acceptable options for improving a data set with missing data include
using various approaches to estimate (impute) the missing data. A popular
approach has been replacing missing values with a mean of the available data on a
target set of scores, such as a column that often represents a variable. For example,
the mean may be from the variable of completed scores where the missing value(s)
reside(s). Mean substitution is attractive because it is a conservative estimate since
the mean of the scores on the variable does not change. However, the variance
of the variable is reduced compared to another score that may have been the
missing value, because one is replacing the missing value with its distribution
mean. Correlations with other variables are also lowered because of the reduced
variance. Mean substitution is less frequently used because other more accurate
methods of imputation have been developed.

Another method is using regression analysis. Regression analysis takes com-
pleted case values from a data set and generates a regression equation to predict the
missing values. This approach may be more sophisticated than mean substitutions,
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but it has limitations. If the variables used to predict the missing values are not
good predictors of the missing values, then the outcome is not optimal.

A sophisticated imputation method called expectation maximization (EM)
involves creating a distribution of partially missing data and making inferences
about missing data under the likelihood of that created distribution (see Little &
Rubin, 2002). As mentioned earlier, specialized statistical software programs have
been developed to handle missing data, such as IBM SPSS Missing Values.

Repeating analyses with and without (imputed) missing data is highly
recommended following any of the methods of handling missing data. You will
be comparing the results for similarities and differences. If the results of the
two analyses are similar, then this provides the researcher with self-assurance as to
interpretation of the results. Further data investigation is needed if the results are
different. It is good practice to report results from both a missing data set and an
imputed missing data set.

We now look at an illustration of assessing and imputing a missing data point
in the example data. We use an imputation technique available in IBM SPSS
known as linear trend at point, which replaces missing values with a linear trend
for that point. There is a regression on the existing series on an index variable
scaled from 1 to n. This linear trend point estimates the missing values.

Initiate Analyze.Descriptive Statistics. Frequencies. If there are any
variables still under the Variable(s) column, click on the Reset button at the
bottom of the screen.

1. Click over TotalMAAS under Variable(s): and click OK.

The output in the TotalMAAS Statistics Table (Table 6.3) shows that
there are 39 cases and 1 case with a missing value. The ID for the missing case
is #11 as seen on the DataView. There is a blank cell for ID #11 in the
column for the dependent variable TotalMAAS.

We will impute the missing value using a linear trend at point analysis.

2. To replace the missing value for ID #11 on the variable TotalMAAS, initiate
Transform.Replace Missing Values. first besideMethod: choose Linear
trend at point. then click over TotalMAAS under New Variable(s):. click
OK. click out of the output produced and go to theDataView, where a new
column is produced called TotalMAAS_1. Save a new data file named Data
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after imputed value & data correction so you know that it contains an
imputed value added to the corrected value completed previously.

You will notice that all of the values in the new column are the same except
for the value that was imputed, and it is 53.76, which is the estimated value for
the missing data. We will be using this changed data file (corrected value and
imputed value) for several other analyses.

Identifying and Assessing Univariate Outliers

Next, we examine how to screen for univariate outliers and the underlying
assumptions of the statistic used. We will also modify the data based on our
findings. We are preparing our data to answer one simple question based on
our study problem: Will there be a significant difference in mindfulness attention
awareness resulting from a new and unique mindfulness training program com-
pared to a traditional mindfulness training program? We will be testing the null
hypothesis that there will be no difference in mindfulness attention awareness
between the new and traditional mindfulness training programs (H0: μ1New¼
μ2Traditional). We will eventually run a one-way ANOVA (F-test) to see if there are
significant differences (we could also run an independent t-test). We screened and
corrected the data set for data entry problems and missing data. We will continue
the data screening process to prepare our data for analysis to protect the integrity
of the inferential statistical test (F-test).

Identifying and Assessing Univariate Outliers

Many statistical methods are sensitive to the impact of scores that are outliers, so
it is important to identify and make decisions about what to do with them. The
reason is, according to Stevens (1996): “Because we want the results of our
statistical analysis to reflect most of the data, and not to be highly influenced by

TABLE 6.3 Missing Case for TotalMAAS

Statistics
TotalMAAS

N Valid 39

Missing 1

c06 19 June 2012; 19:58:28

106 � CHAPT ER 6



just 1 or 2 errant data points” (p. 13). The results of a data set with outliers do not
generalize well to other samples unless they also have similar outliers.

Outliers can be univariate or multivariate. Univariate outliers are extreme
scores by cases on one variable. Multivariate outliers are extreme score combi-
nations by cases on two or more variables. There are many possible reasons for the
existence of outliers (Tabachnick & Fidell, 2007). Outliers can be caused by
errors in data entry and mismanagement of a data file. The participant with an
outlying score on a dependent variable may not be a member of the population
that you intended to sample. For example, you may be studying persons with
obsessive-compulsive disorders (OCDs); a participant got into the sample who
does not have an OCD disorder, and this person’s score on a dependent variable
is extreme compared to the OCD participants’ scores. It is also possible that
participants have outlying scores and they do represent the population you
wanted to sample. The population may have more extreme scores than is
expected in a normal curve.

Tabachnick and Fidell (2007) identified a guideline for determining if a
participant’s score on a continuously scaled dependent variable is a univariate
outlier. If any z-score is in excess of z¼63.29 ( p, .001, two-tailed test),
then it is declared to be a univariate outlier. This guideline is two-tailed,
meaning it applies to extreme negative (left tail) scores and extreme positive
(right tail) scores.

The raw scores on dependent variables are transformed to z-scores. If any z-score
is greater than63.29, it is considered a univariate outlier. Such a score would clearly
be an extreme score using the 63.29 on the normal curve to make the determi-
nation. Next, we compute z-scores for the dependent variable (TotalMAAS_1) raw
scores using the changed data file (corrected value and imputed value).

1. Select Analyze.Descriptive Statistics.Descriptives.

2. Click over TotalMAAS_1 (the longer variable name is TREND(TotalMAAS)
[TotalMAAS_1]) under Variable(s):. click on the box at the bottom of the
screen that says Save standardized values as variables and then click OK.

3. Click out of the Descriptives output and see the new variable at the end of
the DataView spreadsheet called ZTotalMAAS_1. These are the z-scores for
each raw score. Save this file as a new data set called Data after z-score,
imputed value, & entry correction.
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Our task is to identify any value that is greater than 63.29 in each cell under
ZTotalMAAS_1. The value of z¼ 3.37707 for participant ID #32 in the control
group is greater than 13.29, so the raw score of 86 is an outlier. The z-score¼
3.27498 (ID #8) in the treatment condition group is close to being an outlier
using our criterion of63.29 but it does not reach the criterion level. However, it’s
near outlying (using our criterion) effects will be detected in additional analyses
that will be conducted.

There are various approaches forminimizing the effects of outliers. Less desirable
methods are to delete the case or variable with the outlier(s) based on an assessment
of whether the case is representative of the population that the sample was drawn
from. Another approach is using trimmedmeans by discarding 5 percent of the largest
scores and doing the same for 5 percent of the smallest scores.

Conducting a data transformation of the original raw scores also is used to
reduce the influence of extreme scores by bringing the outliers closer to the
majority of scores in the distribution. The procedure to transform data is very
common in the use of statistics. Data transformations are used when raw scores
are converted to z-scores or T-scores. Several advanced statistics have natural
logarithms in their formulas, including logistic regression and log-linear analysis.

Obtaining additional data screening information will be useful to assess
before making a decision on how to handle the univariate outlier that we dis-
covered in the data set. We will next screen the data to establish whether the data
meet the underlying univariate assumptions of the one-way ANOVA statistic.

Screening and Making Decisions about Univariate Assumptions

Many statistical analyses “require that all groups come from normal populations
with the same variance” (Norusis, 1994, p. 89). Statistics like the one-way
ANOVA use sampling distributions to test whether a statistic is significant. The
central limit theorem tells us that regardless of the shape of the population distri-
bution, the sampling distribution of means, drawn from a population with variance
σ2 and mean μ, will approach a normal distribution with σ2/N as sample size N
increases. So, we want our sample distribution on the dependent variable to reflect
normality and the sample variances to be approximately equal (same population) so
that we can test whether two sample means come from the same populations or
different populations. As such, we will assess whether all the group variances are
equal and that samples come from normal populations. If these assumptions
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are violated then we will identify strategies to rectify the violations. More specif-
ically, for normality we will assess histograms, normal Q-Q plots, skewness,
kurtosis, and the Shapiro-Wilk statistic. We will examine the variance ratio (Fmax)
and the Levene’s test to make a decision about the assumption of homogeneity of
variance. Evidence is combined from all of the sources of information to make
decisions about whether the dependent variable is normal and reflecting homo-
geneity of variance across the two conditions. The decisions made are based on the
preponderance of evidence.

We begin by analyzing the dependent variable, mindfulness attention
awareness, for normality using the modified variable TotalMAAS_1. We have
discovered in the screening for unvariate outliers screening that dependent vari-
able had one univariate outlier. We have postponed a decision on what to do with
the univariate outlier until after our screening for normality and homogeneity of
variance. Univariate outliers do have detrimental effects on both normality and
homogeneity of variance. Conduct the following data analysis on TotalMAAS_1.

1. Analyze.Descriptive Statistics.Explore

2. Click over dependent variable TREND(TotalMAAS)[TotalMAAS_1]) to the
Dependent List.

3. Click over independent variable (Condition) to Factor List.

4. Do not change Display choices; leave on Both.

5. In the upper right corner of the screen there are three buttons. Click on
Plots. Then select Histogram and Normality plots with tests.

6. Click on Continue.

7. Click on OK.

Skewness and Kurtosis

Much of the data from the output provides information about the skewness and
kurtosis of the sample distribution of scores. A distribution where scores are not
balanced (asymmetrical) with extreme scores in either tail of the distribution is
skewed. Outliers produce skewed distributions. If most of the scores are on the
left but there are extreme scores on the right side of the curve, it is positively
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skewed. When the extreme scores are on the left side of the curve and most of the
scores are on the right side, it is negatively skewed.

Kurtosis is the relative concentration of scores in the center, the upper and
lower ends (tails), and the shoulders (between the center and the tails) of a dis-
tribution (Norusis, 1994).Mesokurtic refers to a curve as being more symmetrical
and normal (bell) shaped. A curve that is more narrow and peaked is leptokurtic.
Platykurtic reflects a shape of a curve that has scores more widely dispersed and flat.

Histograms

Histograms provide a general visual description of the distribution of data values.
The inspection of histograms is a good place to start in understanding your study
data distribution, but they are often difficult to interpret. Histograms show the
extent that a distribution of values is symmetrical (mesokurtic) and whether cases
cluster around a central value. You can see if the shape of the distribution is more
peaked or narrow (high in the middle—leptokurtic) or more flat (dispersed—
platykurtic). You can also tell if there are values far removed from the other values,
such as values far to the right of the distribution (positive skew) or values far to the
left of the distribution (negative skew).

Refer to the computer output and scroll down until you find the histograms
of the mindfulness attention awareness (TotalMAAS_1) scores for both the
treatment and control groups. The abscissa of the histograms represents the scores
and the ordinate represents the frequency that participants generated the scores.

The treatment group scores appear somewhat symmetrical in Figure 6.1, but
the score distribution is positively skewed with an extreme score on the right side
of the curve. This is the near-outlying score for participant ID #8. The peak of the
curve seems tobe higher thanwemight expect (leptokurtic) compared to the peakof a
normal curve, but we won’t find out for sure until we have conductedmore analyses.

The histogramofmindfulness awareness scores for the control group (Figure 6.2)
is positively skewed with a univariate outlier discovered earlier, score 86, participant
ID #32. The curve is somewhat symmetrical and possibly leptokurtic.

Skewness Screening

A more accurate way to assess whether the distribution of scores on the dependent
variable in each group is significantly skewed is done by creating z-scores. The
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output table called Descriptives contains the information that we will be using
for our analyses (see Table 6.4). We will examine skewness values and calculate
skewness z-scores. The signs (1 or 2) of skewness values and z-scores indicate
the direction of the skew but not whether it is a significant skew. A positive
skewness value and z-score indicate that the score distribution is in the direction
of the right side of the curve, and a negative skewness value and z-score indicate
the direction in the left size of the curve. A skewness value and z-score at or near
0 indicate there is no skewness.

The skewness value for the treatment condition group is 2.071 (positive skew
direction), and the standard error value next to it is .512 (see Table 6.4). When
the skewness value is divided by its standard error the result is a z-score.

FIGURE 6.1 Histogram of Mindfulness Attention Awareness Scores for
the Treatment Group
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So, 2.071/.512 equals a zSkew¼ 4.045. This value can be compared to the cri-
terion that we used for univariate outliers, z¼63.29 ( p, .001, two-tailed test).
The zSkew¼ 4.045 is greater than z¼63.29, so we conclude that the distribution
of scores of the treatment condition group is significantly positively skewed
( p, .001) and departs from being a normal distribution.

The skewness value (1.995, positive skew direction) and its standard error
(.512) for the control group score distribution generate a zSkew¼ 1.995/.512¼
3.896. Again, the control group distribution of scores is not normally distributed
because it is significantly positively skewed since the zSkew¼ 3.896 is greater than
our criterion of z¼63.29.

FIGURE 6.2 Histogram of Mindfulness Attention Awareness Scores for
the Control Group
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Kurtosis Screening

We conduct the same process obtaining kurtosis z-scores and compare them to the
criterion of 63.29. A positive kurtosis value and z-score indicate that the distri-
bution of scores is in the direction of a leptokurtic (more peaked) distribution, and a
negative kurtosis value or z-score designates the direction of a platykurtic (more
flat) distribution. A kurtosis value or z-score close to 0 signifies a mesokurtic
(normal and symmetrical) distribution.

TABLE 6.4 Skewness and Kurtosis Values with Standard Errors of the
Dependent Variable for Both Conditions

Descriptives

Condition Statistic Std. Error

TREND

(TotalMAAS)

Treatment Mean 55.288 1.9418

95% Confidence

Interval for Mean

Lower Bound 51.224

Upper Bound 59.352

5% Trimmed Mean 54.320

Median 53.881

Variance 75.414

Std. Deviation 8.6841

Minimum 43.0

Maximum 85.0

Range 42.0

Interquartile Range 6.5

Skewness 2.071 .512

Kurtosis 6.915 .992

Control Mean 50.550 2.3424

95% Confidence

Interval for Mean

Lower Bound 45.647

Upper Bound 55.453

5% Trimmed Mean 49.333

Median 50.000

Variance 109.734

Std. Deviation 10.4754

Minimum 37.0

Maximum 86.0

Range 49.0

Interquartile Range 11.0

Skewness 1.995 .512

Kurtosis 6.457 .992
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The kurtosis value for the treatment group is 6.915, the standard error is .992,
and the zKurtosis¼ 6.915/.992¼ 6.971 (see Table 6.4). The zKurtosis¼ 6.971 is
greater than 63.29, so it reflects a significant leptokurtic distribution of scores,
which is not a normal distribution.

The control group has a kurtosis value¼ 6.457 and standard error¼ .992, so the
zKurtosis¼ 6.457/.992¼ 6.509.63.29, p, .001. The control group has a signif-
icant leptokurtic distribution of scores, thus departing from a normal distribution.

Shapiro-Wilk Statistic

The Shapiro-Wilk (S-W) test and the Kolmogorov-Smirnov test with Lilliefors
correction are statistical tests that assess the hypothesis that the data are from a
normal distribution. It is important to remember that whenever the sample size is
large, almost any goodness-of-fit test will result in rejection of the null hypothesis
since it is almost impossible to find data that are exactly normally distributed. For
most statistical tests, it is sufficient that the data are approximately normally
distributed (Norusis, 1994).

We will obtain additional evidence about the normality of the distributions of
dependent variable scores in the two groups by testing the null hypothesis, H0:
sample distribution of scores¼ normal. If we fail to reject (retain) the H0 in this
analysis, this finding provides support for the sample scores being normally
distributed. If we reject the H0, then the finding suggests that sample scores are
not normally distributed. Therefore, we are hoping to retain the null when using
the Shapiro-Wilk (S-W) statistic. We will use an alpha (α) level of .05.

The significance probability of the S-W statistic for the treatment group is
p¼ .002 (see Table 6.5). The rule for rejecting an H0 is: if the significance
probability of the statistic is equal to or less than the alpha level, then the H0 is
rejected. The null is rejected for the treatment group since p¼ .002,α¼ .05.
This suggests that the sample distribution of scores for the treatment group is not
normally distributed. The control group also had a significance probability of
p¼ .002, which is less than α¼ .05, so the null hypothesis is rejected. The
control group distribution of scores is not normally distributed.

Assessing Normal Q-Q Plots for Normality

Each observed value in a distribution of scores is paired with its expected value from
the normal distribution in a normal probability plot (Q-Q plot). The expected values
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from the normal distribution are based on the number of cases in the sample and
the rank order of the case in the sample. If the sample is from a normal distribution,
we expect that the points will fall more or less on a straight line.

The Q-Q plots of distributions of scores for both conditions are in
Figures 6.3 and 6.4. For the most part, the points are on or near the line.
However, there is one point in each graph that is substantially off the line. Each
point in the first and second Q-Q plots represents the extreme score in the
treatment and control condition groups that we have identified earlier.

Summary of Our Screening Results for the Underlying
Assumption of Normality

A significant univariate outlier was identified in the control group and an extreme
score was also found in the treatment group but it was not significant. All the
skewness and kurtosis z-scores and Shapiro-Wilk statistics were significant,
indicating that the score distributions in both groups departed from normality.
Finally, the Q-Q plots reflected outliers in the distributions of scores. The pre-
ponderance of evidence strongly suggests that the sample data do not meet the
underlying assumptions of normality. Next, we assess whether the underlying
assumption of homogeneity of variance is met.

Screening for Homogeneity of Variance

The variance ratio (Fmax) and Levene’s test will be used to assess homogeneity
of variance. A variance ratio analysis can be obtained by dividing the highest group
variance by the lowest variance of a group in an analysis. Norusis (2005) provided

TABLE 6.5 Shapiro-Wilk Statistic Results to Assess Normality

Tests of Normality

Kolmogorov-Smirnova Shapiro-Wilk

Condition Statistic df Sig. Statistic df Sig.

TREND(TotalMAAS) Treatment .177 20 .099 .820 20 .002

Control .169 20 .136 .827 20 .002

aLilliefors significance correction.
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a guideline that the homogeneity is acceptable if the ratio of the largest variance to
the smallest variance is less than 4:1. Tabachnick and Fidell (2007) suggested that
if the group or cell sizes (participants per cell) are relatively equal, such as 4 to 1
for largest to smallest participants per cell, then a variance ratio as high as 10 is
acceptable. However, if the largest to smallest number of participants per group
(or cell) are as large as 9 to 1, then, a variance ratio (Fmax) as low as 3 can be
associated with inflated Type I error.

The participants per group are equal in size (n1¼ 20 and n2¼ 20). The variances
of the twogroups are found inTable 6.4.The control grouphad thehighest variance of
s2Control¼ 109.734 and s2Treatment¼ 75.414. The variance ratio is Fmax¼ 109.734/
75.414¼ 1.455. The variance of the control group is 1.455 larger than the variance of
the treatment group. This ratio is lower than the criterion of 4 times larger or 10 times
larger. There appears to be homogeneity of variance across the two groups according
to the variance ratio. We will verify this finding with the Levene’s test.

FIGURE 6.3 Q-Q Plot to Assess Normality of Treatment Condition Scores
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Levene’s Test

The Levene’s test is a test of homogeneity of variance that is less dependent on the
assumption of normality than most tests and thus is particularly useful with analysis
of variance. It is obtained by computing, for each case, the absolute differences from
its cell mean and performing a one-way analysis of variance on these differences.
If the Levene’s test statistic is significant, then the groups are not homogeneous and
we may need to consider transforming the original data or using a nonparametric
statistic (Norusis, 1994). The Levene’s test results are provided with the one-way
ANOVA results, allowing us to review both results at the same time.

1. Analyze.General Linear Model.Univariate.

2. Click over dependent variable TREND(TotalMAAS)[TotalMAAS_1] to
Dependent Variable:.

3. Click over independent variable (Condition) to Fixed Factor(s).

FIGURE 6.4 Q-Q Plot to Assess Normality of Control Condition Scores
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4. Click on the Options button, then select Descriptive statistics, Estimates
of effect size, Observed power, and Homogeneity tests in the Display box.

5. Click on Continue.

6. Click on OK.

The output results of the Levene’s test are found in the table titled Levene’s Test of
Equality of Error Variances (Table 6.6). We are testing the null hypothesis that the
variances and error variances of the dependent variable are equal across the two
condition groups,H0: σ2ErrorðTreatmentÞ ¼ σ2ErrorðControlÞ.We are using anα¼ .05 to test

the null hypothesis. The significance probability of the Levene’s test result is p¼ .578,
which is greater than α¼ .05 so we fail to reject the H0. We can conclude from the
Levene’s test that the variances and error variance are equal across the conditions, and
wemet the underlying assumption of homogeneity of variance. Both the Levene’s test
and the variance ratio support the presence of homogeneity of variance across the two
sample distributions of scores. Next, we discuss the results of the one-way ANOVA
that are also on the output following the Levene’s test information.

One-Way Analysis of Variance Results

We did meet the underlying assumption of homogeneity of variance, but we did
not meet the assumption requirement that dependent variable scores are normally
distributed. We are therefore going to correct for the violation of normality by
transforming the dependent variable to minimize the influence of the outlying
scores that are causing the distribution of scores to be positively skewed and
leptokurtic rather than normal. Both the nontransformed and transformed
analyses are conducted and presented following good practice.

TABLE 6.6 Results of Levene’s Test of
Homogeneity of Variance

Levene’s Test of Equality of Error Variancesa

Dependent Variable: TREND(TotalMAAS)

F df1 df2 Sig.

.315 1 38 .578

Tests the null hypothesis that the error variance of the dependent

variable is equal across groups.
aDesign: Intercept1Condition
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Nontransformed One-Way ANOVA Results

The output results of the one-way ANOVA are in the table called Tests of
Between-Subjects Effects (see Table 6.7). The research problem is a comparison
between the effects a new and unique mindfulness training program and a tra-
ditional mindfulness training program on increasing mindfulness attention
awareness. The null to be tested is H0: μ1Treatment¼ μ1Control using α¼ .05. The
results on the row labeled Condition under Source show that the significance
probability is p¼ .128. The p¼ .128 is greater than the alpha criterion of .05, so
we retain the null hypothesis that there are no mean differences between the two
conditions on mindfulness attention awareness, F(1, 38)¼ 2.425, p. .05. We
will see if the results are similar after we transform the dependent variable.

Transformed Screening and One-Way ANOVA Results

Especially if cases with extreme scores are considered part of the population you
sampled, then a way to reduce the influence of a univariate outlier is to transform the
variable to change the shape of the distribution to be more normal. Tabachnick and
Fidell (2007) and Stevens (1996) provide guides onwhat type of transformation to use
depending on the shape of the distribution you are planning to transform. For
example, a square root or a log10 transformation can be used for positively skewed
distributions to try to normalize them. For negatively skewed distributions,
reflecting the negative distribution (reversing it to positive) and then using a square
root or a log transformation may normalize the distribution. All transformations,
changes of scores, and deletions should be reported in the findings of a study. Since
we have a substantial positively skewed dependent variable, we are going to employ
a log10 transformation. Please run the following analysis after clicking out of the
output we have been using.

1. Select Transform.Compute.

2. Under Target Variable type LTotalMAAS_1. This command will create a
new column of transformed scores on the DataView, so the L (for Loga-
rithm) is used for clarity of what each column of scores represents.

3. Under Functions group: click on All. then under Functions and Special
Variables: scroll down until you find LG10, then click on it and click on the
arrowbutton to the left point up. This placesLG10 underNumeric Expression:.
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TABLE 6.7 One-Way ANOVA Results before Log10 Data Transformation

Tests of Between-Subjects Effects
Dependent Variable: TREND(TotalMAAS)

Source
Type III Sum
of Squares df

Mean
Square F Sig.

Partial Eta
Squared

Noncent.
Parameter

Observed
Powerb

Corrected model 224.499a 1 224.499 2.425 .128 .060 2.425 .329

Intercept 112,017.093 1 112,017.093 1,210.025 .000 .970 1,210.025 1.000

Condition 224.499 1 224.499 2.425 .128 .060 2.425 .329

Error 3,517.821 38 92.574

Total 115,759.413 40

Corrected total 3,742.319 39

aR-squared¼ .060 (adjusted R-squared¼ .035)
bComputed using alpha¼ .05
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4. Next go to variables under Type and Label and click on TREND(Total-
MAAS)[TotalMAAS_1] and then click on the arrow to the right of the box of
variables. It will show up in the place under Numeric Expression where the ?
was. So, the Numeric Expression should look like LG10(TotalMAAS_1).

5. Then, click OK and the log10 transformed variable will be on your Data-
View spreadsheet.

Now, we will see if the log10 transformation was successful in normalizing the
distribution of the dependent variable.Wewill repeat the exploration commands to
assess the measures of normality on the transformed dependent variable.

1. Analyze.Descriptive Statistics.Explore.

2. Click on Reset and then click over the transformed dependent variable
(LTotalMAAS_1) to Dependent List.

3. Click over independent variable (Condition) to Factor List.

4. Do not change Display choices—leave on Both.

5. To the upper right there are three buttons. Click on Plots. Then, select
Histogram and Normality plots with tests.

6. Click on Continue.

7. Click on OK.

The output of the histograms (Figures 6.5a and 6.5b) after Log10 transfor-
mation shows that the extreme scores have moved closer to the other scores in
the distributions. However, they still are apart for the majority of scores in the
distributions.

The output skewness and kurtosis values of the transformed data are in
the Descriptives table (Table 6.8). The zSkewTreatment¼ 1.310/.512¼ 2.559
and the zSkewControl¼ 1.064/.512¼ 2.078. The zSkew scores for both groups are
below 63.29; thus the sample distribution scores are no longer significantly
positively skewed. The log10 transformation was successful on skewness.

The zKurtosisTreatment¼ 4.061/.992¼ 4.094 and the zKurtosisControl¼ 3.006/
.992¼ 3.030. The zKurtosisTreatment¼ 4.094.63.29, so it remains significantly
leptokurtic; but the zKurtosisControl¼ 3.030,63.29, so it is no longer signifi-
cantly leptokurtic.
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FIGURE 6.5A AND B Histograms of the Dependent Variable by Condition
Groups after Log10 Data Transformation
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The Shapiro-Wilk statistics in the Tests of Normality output table (Table 6.9)
show that the treatment group score distribution is still significant since the p¼ .040 is
less thanα¼ .05, but the control group is no longer significant, p¼ .094.α¼ .05.

The output of the normal Q-Q plots (Table 6.10) shows that the log10
transformation was successful in bringing the points closer to the line, including
the extreme scores (see Figures 6.6a and 6.6b). This reflects more congruence
between observed and estimated normal scores.

TABLE 6.8 Skewness and Kurtosis Values after Log10 Transformation

Descriptives

Condition Statistic Std. Error

LTotalMAAS_1 Treatment Mean 1.7382 .01384

95% Confidence

Interval for Mean

Lower Bound 1.7092

Upper Bound 1.7672

5% Trimmed Mean 1.7334

Median 1.7314

Variance .004

Std. Deviation .06189

Minimum 1.63

Maximum 1.93

Range .30

Interquartile Range .05

Skewness 1.310 .512

Kurtosis 4.061 .992

Control Mean 1.6961 .01806

95% Confidence

Interval for Mean

Lower Bound 1.6583

Upper Bound 1.7339

5% Trimmed Mean 1.6900

Median 1.6990

Variance .007

Std. Deviation .08074

Minimum 1.57

Maximum 1.93

Range .37

Interquartile Range .10

Skewness 1.064 .512

Kurtosis 3.006 .992
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The preponderance of the evidence of the log10 transformed data suggests
that the transformed dependent variable scores of both condition groups more
closely approximate normal distributions. We will conduct a one-way ANOVA
on the transformed data to see if there is a significant difference in mindfulness
attention awareness between the new and tradition mindfulness training pro-
grams, H0: μ1Treatment¼ μ1Control using α¼ .05.

1. Analyze.General Linear Model.Univariate.

2. Click over the log10 transformed dependent variable (LTotalMAAS_1) to
Dependent Variable.

3. Click over independent variable (Condition) to Fixed Factor(s).

TABLE 6.9 Shapiro-Wilk Statistics after Log10 Transformation

Tests of Normality

Kolmogorov-Smirnova Shapiro-Wilk

Condition Statistic df Sig. Statistic df Sig.

LTotalMAAS_1 Treatment .142 20 .200* .900 20 .040

Control .130 20 .200* .919 20 .094

aLilliefors significance correction.

* This is a lower bound of the true significance.

TABLE 6.10 Levene’s Test of Homogeneity of Variance after Log10
Transformation

Levene’s Test of Equality of Error Variancesa

Dependent Variable: LTotalMAAS_1

F df1 df2 Sig.

.917 1 38 .344

Tests the null hypothesis that the error variance of the dependent variable is equal across groups.
aDesign: Intercept1Condition
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FIGURE 6.6A AND B Normal Q-Q Plots after Log10 Data Transformation
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4. Click on the Options button, then select Descriptive statistics, Estimates
of effect size, Observed power, and Homogeneity tests in the Display box.

5. Click on Continue.

6. Click on OK.

The Levene’s test results are under the output table called Levene’s Test of
Equality of Error Variances (Table 6.10). The Levene’s test significance probability is
p¼ .344.α¼ .05. There is homogeneity of variance as before the transformation.

The one-way ANOVA results of the log10 transformed data are in the output
table named Tests of Between-Subjects Effects (Table 6.11). The significance
probability is p¼ .072 and is greater than α¼ .05, so we fail to reject the null
hypothesis, F(1, 38)¼ 3.419, p. .05. This is a similar to our finding using the
nontransformed data. This result reinforces the original conclusion that there
appears to be no significant difference in mindfulness attention awareness
between the new and tradition mindfulness training programs that were imple-
mented with this study sample.

The data we used for all of the previous analyses is in Table 6.12.

TABLE 6.11 One-Way ANOVA Results for the Log10 Transformed Data

Tests of Between-Subjects Effects
Dependent Variable: LTotalMAAS_1

Source

Type III
Sum of
Squares df

Mean
Square F Sig.

Partial
Eta

Squared
Noncent.
Parameter

Observed
Powerb

Corrected

model

.018a 1 .018 3.419 .072 .083 3.419 .437

Intercept 117.945 1 117.945 22,791.796 .000 .998 22,791.796 1.000

Condition .018 1 .018 3.419 .072 .083 3.419 .437

Error .197 38 .005

Total 118.160 40

Corrected

total

.214 39

aR-squared¼ .083 (adjusted R-squared¼ .058)
bComputed using alpha¼ .05
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TABLE 6.12 Data Diagnostics Study Example

ID# TotalMAAS Condition

1 52 Treatment**

2 43 Treatment

3 57 Treatment

4 46 Treatment

5 52 Treatment

6 47 Treatment

7 53 Treatment

8 85 Treatment

9 52 Treatment

10 54 Treatment

11* Treatment

12 51 Treatment

13 48 Treatment

14 56 Treatment

15 57 Treatment

16 58 Treatment

17 57 Treatment

18 63 Treatment

19 60 Treatment

20 61 Treatment

21 46 Control

22 500 Control

23 40 Control

24 50 Control

25 37 Control

26 59 Control

27 44 Control

28 51 Control

29 46 Control

30 56 Control

31 54 Control

32 86 Control

33 46 Control

34 57 Control

35 52 Control

36 57 Control

37 47 Control

38 38 Control

39 43 Control

40 52 Control

**Designed missing data cell for data screening.
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SUMMARY

Assessing the integrity of data used in statistical analyses is essential to enhance
the validity of study findings. Data diagnostics are used to screen for data
accuracy, data representativeness, and data meeting the underlying assumptions
of the statistics being used.

PROBLEM ASSIGNMENT

Go to the companion website for additional examples of diagnosing study data
for inaccuracies and assumptions. Use the information presented in this chapter
to guide you as you complete the assignment.

KEY TERMS

asymmetrical

central limit theorem

data diagnostics

data transformation

dummy variable

expectation maximization (EM)

histograms

impute

kurtosis

leptokurtic

Levene’s test

linear trend at point

log10 transformation

mesokurtic

missing completely at random (MCAR)

missing data

missing not at random (MNAR)

negatively skewed

normal probability plot (Q-Q plot)

normality

platykurtic

positively skewed

repeating analyses

replacing missing values with a mean

sample variances to be approximately

equal

Shapiro-Wilk (S-W) test

skewness

transforming the dependent variable

trimmed means

univariate assumptions

univariate outliers

variance ratio analysis
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Chapter 7

RANDOMIZED DESIGN

COMPARING TWO

TREATMENTS AND A

CONTROL USING A ONE-WAY

ANALYSIS OF VARIANCE

LEARNING OBJECTIVES

� Demonstrate how to develop research questions and
hypotheses as they relate to a research problem incorpo-
rating independent and dependent variables.

� Identify the components and application of a randomized
posttest-only control group design.

� Examine Type I and II error considerations and a priori
power analysis in establishing alpha (α).
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� Conduct data diagnostics to assess for normality, homo-
geneity of variance, and independence of observations.

� Execute a one-way analysis of variance (ANOVA) and
Tukey honestly significant difference (HSD) using IBM
SPSS and formulas.

� Interpret post hoc analyses using eta-squared (η2), omega-
squared (ω2), and confidence intervals.

� Understand the study findings combining the various
analyses.

Aone-way analysis of variance (ANOVA) is used to evaluate the effects
of treatment programs to reduce depression among adolescents. A
research question and hypotheses are developed postulating that cognitive-

behavioral therapy and interpersonal therapy will produce significantly lower
depressive symptoms among adolescents when compared to a no-treatment control.
A randomized experimental research design comparing two treatments and a
control is used. A data set is presented that is used for both IBM SPSS software
and formula analyses.

An a priori power analysis is conducted to determine if the sample size,
estimated effect size, and alpha level are adequate to proceed with the study.
A one-way analysis of variance (ANOVA) is applied to test the overall (omnibus)
null hypothesis. The magnitudes of treatment effects are assessed using both eta-
squared and omega-squared effect size measures. A post hoc analysis is conducted
using the Tukey honestly significant difference (HSD) statistic. The .95 confi-
dence intervals are interpreted for the mean differences between group means.
Finally, the overall results are presented.

RESEARCH PROBLEM

The purpose of this research is to determine how effective treatment programs are
in reducing symptoms associated with depression among adolescents. Previous
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research has demonstrated the effectiveness of cognitive-behavioral therapy
(CBT) and interpersonal therapy (IPT) for both treatment (Weisz et al., 2009;
Rossello, Bernal, & Rivera-Medina, 2008) and prevention (Horowitz, Garber,
Ciesla, Young, & Mufson, 2007).

Initially, 160 eighth and ninth grade participants comprised the sample. Prior to
random assignment to condition, 10 participants were identified as not eligible for
the study because they met exclusion criteria related to having a co-occurring
medical or physical condition, receiving psychological treatment, or using medica-
tion for a behavioral or neurological disorder. The remaining 150 participants in the
sample were randomly assigned to receive one of three treatment conditions: (1)
cognitive-behavioral therapy (CBT), (2) interpersonal therapy (IPT), or (3) no-
treatment control (Control). Following assignment to condition, two persons in the
CBT condition and three persons in the IPT chose to discontinue before the study
began. This resulted in 145 participants distributed in the treatment condition
groups: CBT (n1 ¼ 48), IPT (n2 ¼ 47), and Control (n3 ¼ 50). The participants’
average age was M ¼ 14.55 (SD ¼ .68) in this simulated example. Females and
males were approximately equal in number in the sample, 75 (52 percent) females
and 70 (48 percent) males. The adolescents lived in suburban, middle-class
communities.

Depressive symptoms were measured using a self-report measure called the
Center for Epidemiological Studies Depression Scale (CES-D). Higher scores on
the CES-D reflect more depressive symptoms. The CES-D was administered to
all participants in the study prior to treatment and following treatment. We will
be analyzing the posttreatment scores only.

STUDY VARIABLES

The independent variable, depression treatment program, and how it was oper-
ationally defined in this study are described next. In addition, the dependent
variable and its operational definition are identified.

Independent Variable

The independent variable (IV) designed to have an effect on the dependent
variable (DV ) (symptoms of depression) in this study is depression treatment
program. Depression treatment program is operationally defined (OD) as having
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three conditions in this study: (1) cognitive-behavioral therapy (CBT),
(2) interpersonal therapy (IPT), and (3) no-treatment control (Control). These
three conditions will likely, based on previous research, show variability in their
effects on symptoms of depression. Researchers of a different study might use
more, fewer, or other conditions to operationally define the IV�depression
treatment program. More specific operational definition information about the
three conditions of the IV�depression treatment program is presented next.

The cognitive-behavioral therapy condition was developed from a specific
psycho-educational program used for depression among adolescents. The pro-
gram teaches adolescents how to (1) monitor daily moods, (2) identify causes of
their moods, (3) discover and change personal negative beliefs, and (4) under-
stand how negative beliefs affect mood and behavior. The manualized CBT will
be delivered to the randomly assigned group of 48 adolescents in 90-minute
sessions once a week over eight weeks.

The second treatment condition, interpersonal therapy, will be administered to a
different group of 47 adolescents using the same session and time line format
as used for the CBT condition. IPT prevents depression by teaching
communication and social skills to maintain positive relations. IPT focuses
on interpersonal improvement related to life changes, interpersonal conflicts,
and interpersonal skill deficits.

The 50 adolescents participating in the no-treatment, waiting-list control
condition will receive the treatment (CBT or IPT) that demonstrates more
effectiveness when the study is completed. Additionally, the control group par-
ticipants will be monitored weekly as to their functioning and will have imme-
diate access to psychological assistance on their request.

The IV-depression treatment program is an active IV since it can be actively
manipulated by the research. The scale of measurement of the IV is discrete-
nominal (or categorical) as the conditions are designed to be mutually exclusive
from each other with no intended order.

Dependent Variable

The dependent variable (DV) is represented by symptoms of depression and is
expected to change as a result of the impact of the IV�depression treatment
program. The DV, symptoms of depression, in this study is operationally defined
as scores on the Center for Epidemiological Studies Depression Scale (CES-D).
The CES-D is a self-report measure comprised of 20 items. Each item measures a
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depressive symptom on a 4-point frequency scale over the prior week. For
example, an item is “I felt lonely” and the response format ranges from “Rarely or
none of the time (,1 day)” through “Most or all of the time (5�7 days).”Higher
scores on the CES-D represent higher depressive symptoms.

The CES-D scaled items are added together to form a composite scale that is
treated as a continuous-interval scale. The CES-D was administered to all par-
ticipants in the study prior to treatment and following treatment; however, we
will be analyzing the posttreatment scores only.

RESEARCH DESIGN

The research design used for this research example is a randomized posttest-only
control group design (Campbell & Stanley, 1963), also known as a randomized
design comparing two treatments and a control (Shadish, Cook, & Campbell,
2002), comparing the dependent variable results of two groups of adolescents
receiving different treatments and one group getting a no-treatment control
condition. This is an experimental group design involving random assignment of
participants to conditions, a manipulated independent variable, and use of a
no-treatment, waiting-list control condition. The design can be diagrammed as
follows:

R X1 O
R X2 O
R C O

Each line in the diagram represents a group (three groups), and the R sym-
bolizes random assignment to each group condition. The conditions by groups
are represented by X1 (CBT), X2 (IPT), and C (Control). The observation (O) is
the posttest following eight weeks of treatment implementation using the CES-D
to measure differential change in depressive symptoms resulting from the dif-
ferent treatment conditions.

Statistical Analysis: One-Way Analysis of Variance (ANOVA)

A one-way ANOVA (also called a simple ANOVA) tests for significant differ-
ences between two or more means. Theoretically, one-way ANOVA assesses
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mean differences among groups (samples) drawn from different populations, one
population, or several identical populations. The one-way ANOVA is a mathe-
matical extension of the independent t-test, and any number of means can
be tested for differences. In a one-way ANOVA there is one independent
variable (with two or more levels or conditions) and one dependent variable.
The dependent variable used in a one-way ANOVA must be continuously scaled
at the levels of interval or ratio. The following three underlying assumptions need
to be met in order to use the one-way ANOVA.

1. Normality. The scores on the dependent variable for each condition are
normally distributed around their mean.

2. Homogeneity of variance. The variances of the scores of the dependent variable
across the conditions should be constant.

3. Independence of observations. The observations are independent from one
another and not correlated with each other.

The one-way ANOVA is the basic statistic in the ANOVA family of statistics
that is the most used group of statistics in research. The term F-test is used to
denote the statistic in the ANOVA family. The symbol F was designated for
ANOVA statistics by Snedecor (1934) in honor of the founder of the ANOVA,
Sir Ronald Fisher.

There are several commonly used ANOVA family statistics. The multifactor
ANOVA ( factorial ANOVA) analyzes the effects of two or more independent
variables on one dependent variable. The ANOVA statistic is referred to as a two-
way ANOVA if there are two independent variables used in the analysis and a
three-way ANOVA when there are three independent variables.

A repeated-measures ANOVA (RM-ANOVA) is used when there are
two or more measures obtained on the same participants or matched particip-
ants. A RM-ANOVA can have one or more independent and dependent
variables.

A multivariate ANOVA has one or more independent variables but more than
one dependent variable. Analysis of covariance (ANCOVA) is used to assess mean
differences using a covariate to control for an extraneous variable.
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PROGRESS REVIEW

1. The research problem that is focused on in this chapter

relates to comparing the effects of depression treatment

program (independent variable) operationally defined as

cognitive-behavioral therapy, interpersonal therapy, and a

waiting-list control condition on reducing depressive symp-

toms (dependent variable) among adolescents.

2. The 145 adolescent participants are randomly assigned to the

three treatment conditions using a randomized posttest-only

control group design.

3. The changes in depressive symptoms as operationally

defined as scores on the Center for Epidemiological Studies

Depression Scale (CES-D) will be assessed across the three

conditions (CBT, IPT, and Control) using a one-way analysis of

variance statistic.

4. Next, the research question is stated and we begin complet-

ing the steps of the hypothesis-testing process.

STATING THE OMNIBUS (COMPREHENSIVE)
RESEARCH QUESTION

The research question is typically stated before developing the alternative
(research) and null hypotheses. A research question needs to be succinct and
clearly stated so that people reading the research know what is being studied.
Moreover, the variables used in a research study should be identified in the
research question and suggest that they can be operational defined for the pur-
poses of measurement and analysis. The steps of the hypothesis-testing process
related to this research problem will be presented following the statement of the
research question.
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Omnibus Research Question (RQ)

Will there be significant mean differences in depressive symptoms (CES-D
scores) across the depression treatment programs (CBT, IPT, Control) following
treatment implementation?

HYPOTHESIS TESTING STEP 1: ESTABLISH THE
ALTERNATIVE (RESEARCH) HYPOTHESIS (Ha)

The omnibus (comprehensive) alternative hypothesis for our research problem is
stated next in both narrative and symbolic formats. We also will be addressing
subquestions and subhypotheses following the overall analysis.

Omnibus Narrative Alternative Hypothesis (Ha)

There will be significant lower mean depressive symptoms (CES-D scores)
between the depression treatment programs of CBT and IPT when compared to
the control condition following treatment implementation.

Symbolic Ha

Ha : ðμ1 6¼ μ2Þ , μ3

where μ1 ¼ population mean of depressive symptoms (CES-D) of partici-
pants in the CBT condition being estimated by the sample mean

μ2 ¼ population mean of depressive symptoms (CES-D) of partici-
pants in the IPT condition being estimated by the sample mean

μ3 ¼ population mean of depressive symptoms (CES-D) of partici-
pants in the Control condition being estimated by the sample mean

This is a directional alternative hypothesis because it is expected that both the
CBT and IPT treatments will significantly reduce depressive symptoms when
compared to the no-treatment control condition. However, there is no direction
hypothesized as to whether CBT or IPT will be more effective when compared to
each other in reducing depressive symptoms. In this study, we are taking the
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position that there is nonconclusive previous evidence to hypothesize that either
CBT or IPT will be superior to the other in reducing depressive symptoms.
However, there is evidence from the literature allowing us to state a direction
regarding the effectiveness of both CBT and IPT in reducing depressive symp-
toms compared to the control condition.

An alternative process to reach conclusions in analyzing one’s sample data is
following the recommendations of Jones and Tukey (2000). Act as if: (1) (μ1 �
μ2) . 0, (μ1 � μ3) . 0, (μ2 � μ3) . 0; (2) (μ1 � μ2) , 0, (μ1 � μ3) , 0,
(μ2 � μ3) , 0; or (3) the sign (, 0 or . 0) of (μ1 � μ2), (μ1 � μ3), (μ2 � μ3) is
indefinite. Using this approach, we will be making conclusions about whether
omnibus and paired-mean differences are greater than zero or less than zero, or
that the findings are inconclusive about the whether one mean is greater or less
than zero. In this study, we are expecting that the CBT and IPT conditions will
produce lower scores on depressive symptoms compared to the control condition,
so we expect these conclusions to be that (μ1 � μ3) , 0 and (μ2 � μ3) , 0.
We do not have enough previous evidence to hypothesize whether CBT and IPT
will produce lower depressive symptoms when compared to each other, so we will
state that (μ1 � μ2) is indefinite.

HYPOTHESIS TESTING STEP 2:
ESTABLISH THE NULL HYPOTHESIS (H0)

The omnibus null hypothesis is stated in narrative and symbolic formats in the
second step of the hypothesis-testing process.

Omnibus Narrative Null Hypothesis (H0)

H0: There will be no significant mean differences in depressive symptoms
(CES-D scores) across the depression treatment programs (CBT, IPT,
Control) following treatment implementation.

Symbolic H0

H0: μ1 ¼ μ2 ¼ μ3
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HYPOTHESIS TESTING STEP 3: DECIDE ON A RISK LEVEL
(ALPHA) OF REJECTING THE TRUE H0 CONSIDERING

TYPE I AND II ERRORS AND POWER

During this step of the hypothesis-testing process, we choose an alpha criterion (α)
that we will use to make a decision about whether to reject a true null hypothesis
(H0). In choosingα, we will considerType I (alpha) error, which is the probability of
rejecting H0 (mean differences) when in fact (theoretically) it is true (no mean
differences). To balancemaking a Type I error, we need to also consider themaking
a Type II (beta) error, which is the probability of failing to reject H0 (no mean
differences) when it is in fact (theoretically) false (mean differences).

Then, we will use our chosen α level and combine it with anticipated sample
size and an estimated (a priori) effect size and determine if we have enough power
to conduct the study. Power is the probability of correctly rejecting a false null
hypothesis.

Selecting Alpha (α) Considering Type I and Type II Errors

One decision we need to make before collecting and analyzing data to test the
omnibus null hypothesis (H0) is to choose a risk level we are willing to take in
rejecting an H0 (identifying a difference in means) when the H0 is true (there is
no difference in means). This decision is referred to as setting the alpha level (α).
This decision is also called establishing a level of significance or setting the alpha
criterion.

We will choose a level for α from .001, .01, .05, or .10, following common
practice. The closer the chosen alpha is to .000, the stricter it is because the H0 is
more difficult to reject. Thus, an alpha of .001 (1 time in a thousand) is very strict,
and α ¼ .01 (1 time in 100) can be viewed as strict. In contrast, an α ¼ .05
(5 times in 100) is somewhat strict and α ¼ .10 is less strict as risk levels in
rejecting the null hypothesis.

There have been a few previous studies (see Horowitz & Garber, 2006)
showing that CBT and IPT are effective in reducing depressive symptoms among
adolescents when compared to a no-treatment control, but neither treatment has
demonstrated superior effectiveness over the other.

A somewhat strict alpha of .05 will be used in this study to test the H0, since
there have been a limited number of previous studies conducted demonstrating
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the effectiveness of CBT and IPT on depressive symptoms in adolescents. There
is not enough evidence yet concerning the pattern of mean differences in studies
comparing CBT and IPT to each other and to a control condition. Thus, we will
not use a stricter (.001 or .01) alpha level since we do not want, at this point, a
criterion level that more closely differentiates a decision about the degree of
differences between conditions on depressive symptoms.

An alpha of .05 provides a reasonable balance between avoiding rejecting the
H0 when there really is no significant difference in the means (Type I [alpha]
error) and not rejecting the H0 when there really is a significant difference in
means (Type II [beta] error).

A Priori Power Analysis

It is important to assess if key elements are in place to find a significant difference
in means on the dependent variable across the conditions if it exists before we
conduct the study (a priori) or data analysis. Therefore, we will conduct an a
priori power analysis that is the probability associated with correctly rejecting
a false null hypothesis (see Figure 3.1 from previous Chapter 3). Initially, the a
priori power analysis is conducted before participants are selected and assigned to
conditions so that decisions can be made about study modifications such as
increasing sample size before the study actually begins. If the selected number of
participants is lower than the number of participants planned prior to selection,
then power analysis is conducted again to see if it is acceptable. In our example,
we are going to conduct an a priori power analysis after participant selection and
assignment to condition before the data are analyzed.

The three key elements used to conduct an a priori power analysis are alpha,
sample size, and estimated (a priori) effect size. We can combine these three
elements together mathematically and determine if our planned alpha, sample
size, and estimated effect size for our proposed study converge into an acceptable
probability (power) necessary to find a significant difference in means if it exists.
It is not in a researcher’s best interest to go ahead and conduct the study if
these three elements combined do not create a probability that maximizes the
emergence of treatment effects in a study if they exist. This could result in making
a Type II error, which is the probability of not finding a significant difference
when there really is a difference—in other words, failing to reject the H0 when it
is false.
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We have decided to use an alpha of .05 and we are planning on using a
sample size of 145. Now we need to estimate an effect size and then we can
combine the three elements to identify the probability of correctly rejecting a false
null hypothesis (power). An effective method for estimating an effect size for the a
priori power analysis is to use effect sizes resulting from previous studies that use
variables and designs similar to the ones we will use in our study.

We are going to use findings obtained from four previous studies that focused
on assessing the effects of either CBT or a combination of CBT and IPT on
depression improvement among adolescents. The four studies produced the
following post hoc effects sizes using eta-squared (η2): η2 ¼ .11 (N ¼ 21),
η2 ¼ .13 (N ¼ 94), η2 ¼ .32 (N ¼ 41), and η2 ¼ .61 (N ¼ 59). We can get
an accurate measure of central tendency (mean) of the four effects sizes by
weighting them by their sample sizes (i.e., weighted by sample size).

Weighted by Sample Size Average η2

Next, we will calculate a weighted average η2 that we will combine with our
sample size and alpha for use in calculating power.

η2 ¼ 21ð:11Þ þ 94ð:13Þ þ 41ð:32Þ þ 59ð:61Þ
215

¼ 2:310þ 12:220þ 13:120þ 35:990
215

¼ 63:640
215

η2 ¼ :296 ðThis is the weighted by sample average η2

from four previous studies:Þ

Conversion to Cohen’s Effect Size (f)

So, we now have an estimated effect size (η2 ¼ .296). We will next convert the
average η2 to another effect size f using the formula identified by Cohen (1988).
This conversion will allow us to use several procedures developed by Cohen for
analysis and interpretation.
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f ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2*=1� η2

p
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

:296=1� :296
p

¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:296=:704

p
¼ ffiffiffiffiffiffiffiffiffi

:420
p

f ¼ :648

*In our problem, η2 is the average η2 of four previous studies.

Power Analysis Using G*Power 3.1.2

A useful method to conduct a power analysis is to use a computer program called
G*Power 3.1.2, developed by Erdfelder, Faul, & Buchner (2010). Conduct the
following steps (see Figure 7.1).

1. Create a folder on your desktop called gpower.

2. Google G*Power.

3. Click on G*Power3 is now available.

4. Then, click on Download and register; click on the download and save to
your folder.

5. Double click on a created folder called GPower3.

6. Double click GPOWER 3.1.2 link.

7. Under Test family . select F tests.

8. Under Statistical test . select ANOVA: Fixed effects, omnibus, one-way.

9. Under Type of Power Analysis . select A priori: Compute required
sample size—given α, power, and effect size.

10. Type in beside Effect size f 0.648.

11. Type next to α err prob 0.05.

12. Type next to Power (1�β err prob) 0.80.

13. Type next to Number of groups 3.

14. Click on the Calculate button and you will see that we need a total sample
size ¼ 27 to reach an actual power of 0.8145419.
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Our total sample of 145 far exceeds a needed sample size of 27. Considering the
combined elements in our study of total sample size of 145, f ¼ .648, andα ¼ .05,
a power greater than .80 should be achieved. Therefore, we should be confident in
correctly rejecting a false H0 in our study and thus avoid making a Type II error.

FIGURE 7.1 A Priori Power Analysis of ANOVA Problem
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PROGRESS REVIEW

1. We stated the research question for the study problem.

2. We completed the first two steps of the hypothesis-testing

process by stating the alternative and null hypotheses in

narrative and symbolic formats.

3. Next, we decided on the risk we are willing to take when

rejecting a true null hypothesis by choosing alpha (α).
We chose α ¼ .05, which we believed was a reasonable cri-

terion in our study to avoid making a Type I or Type II error.

4. We conducted a power analysis to make sure that our prob-

ability of correctly rejecting a false null hypothesis in favor

of an alternative hypothesis was adequate (power ¼ .80)

before moving ahead with the study. We found that we had

adequate a priori power using an online power analysis pro-

gram (G*Power). This provided information necessary to

continue on with the study.

HYPOTHESIS TESTING STEP 4: CHOOSE
APPROPRIATE STATISTIC AND ITS

SAMPLING DISTRIBUTION TO TEST THE H0

ASSUMING H0 IS TRUE

We will be using a one-way ANOVA to test the null hypothesis: H0: μ1 ¼
μ2 ¼ μ3. We are going to compare the means of depressive symptoms across
the conditions (CBT, IPT, and Control) for significant differences using the
F-distribution. The one-way ANOVA is appropriate to use because: (1) there is
one independent variable, (2) there are different participants in each independent
condition group, (3) there is one dependent variable, and (4) the dependent
variable is continuously scaled.
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HYPOTHESIS TESTING STEP 5: SELECT SAMPLE, COLLECT
DATA, SCREEN DATA, COMPUTE STATISTIC, AND

DETERMINE PROBABILITY ESTIMATES

Data are collected from a sample of participants during Step 5 of the hypothesis-
testing process. The data are assessed for data accuracy, missing values, and uni-
variate outliers, and to determine if the underlying assumptions of the statistic are
met. If needed, data modifications are made. Then the omnibus null hypothesis is
tested using statistical analyses.

Sample Selection and Assignment

The sample in this study is selected using purposive sampling of typical instances
(Shadish, Cook, & Campbell, 2002). In purposive sampling of typical instances,
we define the characteristics that reflect the persons, settings, times, independent
variables, and dependent variables we intend to generalize in our findings.
We then select participants who match the targeted characteristics. We can also
use inclusion criteria and exclusion criteria to assist in the matching process for
congruence to the targeted characteristics. Moreover, the use of exclusion criteria
can help us assess whether the participants are appropriate and safe as they engage
in the study conditions.

Adolescents with symptoms of mild depression in eighth and ninth grades
living in suburban, middle-class communities in the Southwest United States
during the 2012 fall semester were targeted for this study. Following necessary
Institutional Review Board (IRB) approvals, school district professionals referred
students for participation in the study.

The students were interviewed and assessed prior to being selected for the
study. They needed to meet the inclusion criteria of: (1) being an eighth or ninth
grade student in the school district, (2) having mild symptoms of depression as
measured by having a score between 14 and 19 on the Beck Depression Inventory
II (BDI-II), (3) assenting or agreeing to participate in the study, and (4) having
parental consent to participate.

Students were excluded from participating in the study if they: (1) had a
co-occurring medical or physical condition, (2) were currently receiving psy-
chological treatment, (3) were currently using medication for a behavioral
or neurological disorder, (4) had current thoughts or past history of suicide
ideation, or (5) were currently involved in substance abuse. The school district
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professionals referred 160 eighth and ninth grade students for participation in the
study. Before random assignment to condition, 10 participants were determined
to be not eligible for the study because they met exclusion criteria related to
having a co-occurring medical or physical condition, receiving psychological
treatment, or using medication for a behavioral or neurological disorder. The
remaining 150 participants in the sample were randomly assigned to three groups
using a table of random numbers to receive one of three treatment conditions.
Following assignment to condition, two persons in the CBT condition and three
persons in the IPT chose to discontinue before the study began, leaving a sample
of 145. This resulted in the following number of participants in each treatment
condition group: CBT (n1 ¼ 48), IPT (n2 ¼ 47), and Control (n3 ¼ 50).

Study Data Diagnostics

Diagnostic assessments are conducted on the sample data after it has been col-
lected but before the primary study hypothesis is tested. The purposes of data
diagnostics (also called exploratory data analysis, data screening, or data prepara-
tion for analysis) are to: (1) check accuracy of data entries, (2) identify and deal
with missing data (missing data analysis), (3) detect and make decisions about
univariate (one dependent variable) outliers, and (4) screen and make decisions
about univariate parametric assumptions. The underlying assumptions of a one-
way ANOVA are that the dependent variable is normally distributed (normal
enough), the group variances and error variances of the dependent variable are
equal (not exactly equal but equal enough), and all observations are independent
from each other. There are several measures to assess normality, homogeneity of
variance, and independence. Screening measures have limitations as to their
usefulness given various conditions of a study. We will therefore look at several
screening measures to assess underlying assumptions and use a preponderance of
evidence to make a decision about whether the underlying assumptions were met.

Accuracy of Data Entry

The original data were compared to the entered data by two members of the
research team. The accuracy of the data was corroborated by the two researchers.
Moreover, the variable scores were in the expected range, and the means and
standard deviations appeared plausible.
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Missing Data Analysis

There were no missing data in the original data set.

Means, Standard Deviations, Variances, and Assessing for Univariate
Outliers IBM SPSS Commands

Enter the data from the One-Way Analysis of Variance Data table at the end of
this chapter into IBM SPSS. Enter the data into three columns just as it appears
in the table.

1. Click on Data . Split File . click on circle beside Organize output by
groups . click on Condition and click the arrow so that Condition is under
Groups Based on . click on OK and don’t save command output. You
have told the program to provide output by the three groups (Condition).
You will need to change this command back later.

2. Click on Analyze . Descriptive Statistics . Descriptives . click over
DepSymptoms to Variable(s) . click on Save standardized values as vari-
ables . click on Options and check Minimum, Maximum, Mean, Std.
deviation, and Variance . click on OK . save the output as ANOVA
Descriptives.

The Descriptive Statistics table (Table 7.1) lists the sample size of each
group followed by the lowest (minimum) and highest (maximum) scores in
each group. Valid N refers to the number of participant scores that do not having
missing data. The average scores (means) by groups on the CES-D following
treatment are provided. Measures of variability designate how the scores in each
group distribution deviate from their group mean. The standard deviation is an
average measure of score deviations from the mean, whereas the square of s is the
variance (s2) or general spread of scores from the mean. Higher scores reflect more
deviation of scores from the mean for both s and s2. As you can see, there is a
higher deviation of scores from the mean for the control group followed by the
CBT and IPT groups.

The standard values (z-scores) requested for the analysis to assess for uni-
variate outliers are produced in a new column on the Data View spreadsheet and
named ZDepSymptoms. These values represent the z-scores corresponding to the
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raw scores in each group : CBT(rows 1�48), IPT(rows 49�95), and Control
(rows 96�145). The three highest positive and negative z-scores for each group
are reported in Table 7.2. For example, the highest +z score for CBT is 2.516
(rounded up to three decimal places) and is obtained by subtracting the raw score
(33) from the CBT group mean (17.333) and dividing by the CBT group
standard deviation (6.227).

TABLE 7.1 Descriptive Statistics of Depressive Symptoms by Condition
Group

Condition 5 CBT

Descriptive Statisticsa

N Minimum Maximum Mean Std. Deviation Variance

DepSymptoms 48 7.00 33.00 17.3333 6.22737 38.780

Valid N (listwise) 48

Condition 5 IPT

Descriptive Statisticsb

N Minimum Maximum Mean Std. Deviation Variance

DepSymptoms 47 5.00 32.00 17.0213 5.99452 35.934

Valid N (listwise) 47

Condition 5 Control

Descriptive Statisticsc

N Minimum Maximum Mean Std. Deviation Variance

DepSymptoms 50 10.00 35.00 21.6800 7.14697 51.079

Valid N (listwise) 50

a Condition ¼ CBT
b Condition ¼ IPT
c Condition ¼ Control

TABLE 7.2 Highest 6z-Scores by Condition Group

Condition Highest 1z Outlier? . 63.29 Highest �z Outlier? . 63.29

CBT 2.516* No �1.659 No

IPT 2.499 No �2.005 No

Control 1.864 No �1.634 No

* This number is rounded to three decimals.
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Z ¼ 33� 17:333
6:227

¼ þ15:667
6:227

¼ þ2:516

We are going to use as a criterion 63.29 (,.001, two-tailed) to compare our
z-scores, following a recommendation by Tabachnick and Fidell (2007). On the
normal curve, only .001 (1 one-thousandth) of the curve remains beyond a z-score
of 63.29, and for a two-tailed test, only .0005 remains in either tail. So, any
z-score representing a raw score from a group on the dependent variable of
depressive symptoms greater than 63.29 is indeed an extreme score (univariate
outlier). Since the highest positive and negative z-scores for each group are less than
63.29, there are no univariate outliers within any of the three groups using the
p , .001, two-tailed test criterion. No individual score within a group is too far
removed from the rest of the group’s scores, given the criterion thatwe have selected.

At this point, remove the Split File filter. Data . Split File . click on the
Reset button and then click OK; click out of the output and don’t save it.

Assessing for Underlying Assumptions

Certain underlying assumptionsmust be present in order to apply various statistical
analyses to data sets. Two important underlying assumptions for many parametric
statistics are that the dependent variable is normally distributed and that there are
equal variances and error variances across groups. We are going to use several
measures to assess both normality and homogeneity of variance and evaluate the
preponderance of evidence to determine if we have met these underlying assump-
tions. First, we will evaluate the dependent variable (depressive symptoms) for
normality by assessing histograms, skewness, kurtosis, the Shapiro-Wilk statistic,
and normal Q-Q plots.

Normality IBM SPSS Commands

1. Analyze . Descriptive Statistics . Explore.

2. Click over dependent variable DepSymptoms to Dependent List.

3. Click over independent variable (Condition) to Factor List. Factor is
another term for independent variable.

4. Do not change Display choices—leave on Both.
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5. To the upper right of Display are three buttons. Click on Plots. Then,
select Normality plots with tests.

6. Under Spread vs. Level with Levene Test click on Untransformed.

7. Click on Continue.

8. Click on OK.

9. Save the output as assumptionscreen.

First, look at the information under Descriptives on the output (see
Table 7.3), you will notice that there are several descriptive statistics provided
relative to depressive symptoms for each of the three condition groups. For
example, means, standard deviations, and variances are provided for each group,
and these match the values that you identified in a previous analysis.

You also see values for skewness and “Std. Error” for each group. When you
divide the skewness statistic value by its standard error value, the resulting value is
a z-score. The skewness and standard error and their resulting skewness z-scores
are presented in Table 7.4.

A positively skewed (right-skewed) curve has most of the scores at the lower
values of the horizontal axis, and the curve tails off toward the higher end. Thus,
more extreme scores relative to most of the scores in the distribution are in the
positive (right) end of the distribution.

A negatively skewed (left-skewed) distribution has most of the scores at the
higher values, and the curve tails off toward the lower end of the horizontal axis.
Thus, more extreme scores relative to most of the scores in the distribution are in
the negative (left) end of the distribution.

If a skewness z-score value is at or near 0, the distribution is symmetrical and
considered normal or near normal.When the skewness z-score value is positive, there
is some degree of skew in the positive (right) side of the curve but not necessarily a
significant skew. A negative skewness z-score value suggests some degree of skew in
the negative (left) side of the curve but again not necessarily a significant skew.

The skewness z-scores are compared to the same criterion that we used to
determine univariate outliers, 63.29 ( p , .001, two-tailed test). The distribu-
tion of raw scores on the dependent variable (depressive symptoms) for each
condition group (CBT, IPT, and Control) does not significantly depart from
normality using our criterion, as is evident when you compare the calculated
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TABLE 7.3 Skewness, Kurtosis, and Standard Error Values by Group

Descriptives

Condition Statistic Std. Error

DV CogBehav Mean 17.3333 .89884

95% Confidence

Interval for Mean

Lower Bound 15.5251

Upper Bound 19.1416

5% Trimmed Mean 17.0648

Median 16.5000

Variance 38.780

Std. Deviation 6.22737

Minimum 7.00

Maximum 33.00

Range 26.00

Interquartile Range 9.50

Skewness .613 .343

Kurtosis �.022 .674

IPI-AST Mean 17.0213 .87439

95% Confidence

Interval for Mean

Lower Bound 15.2612

Upper Bound 18.7813

5% Trimmed Mean 16.8570

Median 16.0000

Variance 35.934

Std. Deviation 5.99452

Minimum 5.00

Maximum 32.00

Range 27.00

Interquartile Range 8.00

Skewness .524 .347

Kurtosis .014 .681

Control Mean 21.6800 1.01073

95% Confidence

Interval for Mean

Lower Bound 19.6489

Upper Bound 23.7111

5% Trimmed Mean 21.6556

Median 21.0000

Variance 51.079

Std. Deviation 7.14697

Minimum 10.00

Maximum 35.00

Range 25.00

Interquartile Range 12.25

Skewness .093 .337

Kurtosis �1.143 .662
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skewness z-score values from Table 7.4 to the criterion of 63.29. For example,
we found the highest skewness z-score to be +1.787, which is considerable lower
than our criterion of 63.29.

Below the skewness and standard error values in output reported in Table 7.3
are the “Kurtosis” and “Std. Error” values. We will divide the kurtosis statistic by
its standard error and compare the z-score resultant to a63.29 to see if any group
distribution significantly departs from normality. (See Table 7.5.)

Kurtosis is the clustering of scores in the center, the upper and lower ends
(tails), and the shoulders (between the center and the tails) of a distribution
(Norusis, 1994). A distribution that is symmetrical and normal is mesokurtic and
will have a z-score around 0. A positive z-score indicates that the distribution is
more leptokurticwith a shape that ismore narrow and peaked.However, just having
a positive z-score does notmean that the distribution is significantly departing from
normality. A platykurtic shape generates a negative z-score and the distribution is
more broad and flat, but it is not necessarily significantly departing from normality.
None of the three condition group distributions have kurtosis z-scores that are
greater than63.29, so they do not depart significantly from normality.

The Shapiro-Wilk (S-W) statistic is another source of evidence to use to
determine if the distribution of the group conditions are normally distributed.

TABLE 7.4 Skewness z-Scores by Condition Group

Condition
Skewness z (Stat./
Std. Error 5 Z)

Skewness
Direction

Sig. Departure?
(. 63.29)

CBT .613/.343 ¼ 1.787 Positive No

IPT .524/.347 ¼ 1.510 Positive No

Control .093/.337 ¼ .276 Positive No

TABLE 7.5 Kurtosis z-Scores by Condition Group

Condition
Kurtosis z (Stat./
Std. Error 5 Z)

Kurtosis
Direction

Sig. Departure?
(. 63.29)

CBT �.022/.674 ¼ �.033 Platykurtic No

IPT .014/.681 ¼ .021 Leptokurtic No

Control �1.143/.662 ¼ �1.727 Platykurtic No
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The S-W statistic is found in the output under Tests of Normality (see Table 7.6).
First, we are going to state a null hypothesis to test using the S-W with an
alpha of .05.

H0 : The Sample Distribution ¼ Normal

More often than not, when we test a null hypothesis we want to reject it to
demonstrate a significant difference or relationship. Interpreting the results of the
S-W statistic is an example of when we want to retain the null hypothesis, which
says that the sample distribution that we are testing is not deviating significantly
from being normal.

In the output table called Tests of Normality, you see values associated with
the Shapiro-Wilk statistic, df, and “Sig.” We fail to reject the null hypotheses for
the condition group distributions of the CBT and IPT groups since the signif-
icant probability levels (“Sig.”) of the Shapiro-Wilk statistic are .107 and .196,
which are greater than α ¼ .05. The rule is to reject a null hypothesis if the
probability level of the calculated statistic is less than our stated alpha level and we
fail to reject the null if our significance probability is greater than our alpha. Thus,
we conclude that these two group distributions are not deviating significantly
from being normal. However, the significant probability value of .043 for the
Control group is lower than α ¼ .05; therefore, the null is rejected, suggesting
that the distribution is not normally distributed.

The final evidence of normality that we will interpret is the normal Q-Q plot
for each distribution. A plot for each group is located in the output under the

TABLE 7.6 Shapiro-Wilk Statistics by Condition Group

Tests of Normality

Kolmogorov-Smirnova Shapiro-Wilk

Condition Statistic df Sig. Statistic df Sig.

DV CogBehav .145 48 .013 .961 48 .107

IPI .159 47 .005 .967 47 .196

Control .092 50 .200* .952 50 .043

a Lilliefors significance correction.

* This is a lower bound of the true significance.
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heading Normal Q-Q Plots. An observed value in the distribution is paired with
its expected value from the normal distribution to form the normal Q-Q plots.
The number of cases in the sample and the rank order of the cases in the sample
are used to generate the expected values for the normal distribution. If the
sample is from a normal distribution, we expect that the points will fall more or
less on a straight line (see Figures 7.2, 7.3, and 7.4).

The vast majority of points on the Q-Q plots in all three condition group
distributions fall on or near the straight line, providing further evidence that each
group is normally distributed.

Summary of the Normality Evidence

There were no univariate outliers identified within the distributions of the three
condition groups. The skewness z-scores, kurtosis z-scores, and Q-Q plots pro-
vided support that the three distributions are not deviating significantly from

FIGURE 7.2 Normal Q-Q Plot of Depressive Symptoms for CBT Group
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normality. The S-W statistic was satisfactory for the CBT and IPT distributions
but less than satisfactory for the Control group distribution. Despite the S-W
statistic finding for the Control group, the preponderance of evidence suggests
that the three distributions are normal enough to clearly meet the underlying
assumption of normality.

Homogeneity of Variance

In this study we are expecting that the independent variable (depression treat-
ment program) will affect the means of the dependent variable (symptoms of
depression) but not the variances of the groups. We want the variances of the
three groups (CBT, IPT, and Control) on the dependent variable to be relatively
constant. We are going to look at two methods to assess whether the variances are
equal enough across the condition groups. The first method is called the variance
ratio (Fmax), which is the ratio of the largest group variance to the smallest group

FIGURE 7.3 Normal Q-Q Plot of Depressive Symptoms for IPT Group
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variance within the three condition groups. This provides a simple descriptive
statistic for initial screening. If the ratio of group sizes is less than 4.0, then an
Fmax as high as 10.0 is acceptable. When the ratio of group sizes goes to 9.0, then
an Fmax of 3.0 is acceptable (Tabachnick & Fidell, 2007).

The Control group had the largest number of participants at 50, and the
IBT had the smallest group size of 47 (see Table 7.1). The group size ratio is
50/47 ¼ 1.064; this is well below a group size ratio of 4.0, so we can apply the
Fmax ¼ 10.0 guideline.

The Control group had the highest variance of 51.079, and the IPT group
showed the lowest variance of 35.934. The Fmax ¼ 51.079/35.934 ¼ 1.421 and
is well below 10.0. The low variance ratio supports homogeneity of variance
across the groups. We will next corroborate this finding with another measure of
homogeneity of variance known as Levene’s test.

We will test the following null hypothesis of equality of the error variances
across the three groups when using Levene’s test of homogeneity of variance.

FIGURE 7.4 Normal Q-Q Plot of Depressive Symptoms for Control Group
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We want to retain the null hypothesis concluding that the variances across the
three groups are equal enough using an alpha criterion of .05.

H0: σ2e CBT ¼ σ2e IPT ¼ σ2e Control

The Levene’s statistic is found in the “assumptionscreen” output under the
heading Test of Homogeneity of Variance (see Table 7.7) on the line called “Based
on the Mean.”

We fail to reject the H0 that the error variances are equal since the probability
value of .135 is greater than the α ¼ .05. The underlying assumption of
homogeneity of variance has been met using Levene’s statistic.

Summary of the Homogeneity of Variance Evidence

The evidence from both the variance ratio (Fmax) and Levene’s statistic provide
support that the variances and error variances are equal enough across the three
condition groups. There is no alarming disparity in group sizes among the groups,
so we will conclude that the underlying assumption of homogeneity of variance
has been met.

Independence

There are different participants in each of the three groups, and each participant’s
score was produced independent of the other scores. If dependent variable test
scores across condition groups are correlated with each other when the scores are
collected in the same order, the significance level of the ANOVA can be smaller

TABLE 7.7 Levene’s Test of Homogeneity of Variance

Test of Homogeneity of Variance

Levene’s Statistic df1 df2 Sig.

DepSymptoms Based on mean 2.034 2 142 .135

Based on median 1.826 2 142 .165

Based on median and

with adjusted df

1.826 2 141.911 .165

Based on trimmedmean 2.060 2 142 .131
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than it should be (Norusis, 2003). We are going to assess the independence of
observations by graphing the responses of participants on the dependent variable
by group condition based on the same order in which measurements (observa-
tions) were obtained. The data in the SPSS Data View spreadsheet are in a similar
order by group based on when the data were collected. We will need to create
three columns of data to complete the matrix scatter plot analysis to assess
independence.

Matrix Scatter Plot IBM SPSS Commands

1. First, close all output that you have been working on. Under the column
labeled DepSymptoms on the IBM SPSSData View spreadsheet, left click and
hold on the first cell, which is 16, and drag down until you reach row 48,
which happens to be another 16 and the last participant score in the CBT
group (condition 1). All of the numbers should be in bold.

2. At the top of the screen, click on Edit and then Copy. This will copy the
data for pasting to a new column.

3. Go to the first empty column (var), click on the first cell, and it will be
bolded.

4. At the top of the screen, click on Edit and then click on Paste and the data
from the CBT group will be copied to the new column.

5. At the bottom left of the spreadsheet, click on Variable View and then name
the new column as CBT and change the decimals to 0.

6. Click on the Data View button and create a new column for the 47
IPT DepSymptoms scores (Condition 2) and a new column for the 50
Control scores (Condition 3) in the same way. Once you have completed the
three new columns, File . Save.

7. At the top of the screen, click on Graphs . Legacy Dialogs . Scatter/
Dot . Matrix Scatter . Define.

8. Click over the three new columns (CBT, IPT, and Control ) to the space
under Matrix Variables . OK.

The matrix scatter plot (Figure 7.5) shows the scores of each group compared
to the other groups. The scores are in the order they were obtained and are paired
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as circles in each graph representing two groups being compared. If the scores
form a diagonal straight line when any two groups are compared, then the
scores are correlated and not independent. There appear to be no serious linear
trends between paired scores across the groups. The points scatter in many
directions. Therefore, we will conclude that we have met the assumption of
independence.

Summary of the Underlying Assumptions Findings

The preponderance of evidence assessed demonstrates that the distributions of
scores on the dependent variable in the three condition groups did not deviate

FIGURE 7.5 Matrix Scatterplot to Assess Independence
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from normality. Both measures of homogeneity of variance supported fulfill-
ment of the assumption of equality. Finally, the scatter plots suggest that
independence of dependent variable scores was met. This information provides
an endorsement to conduct the one-way analysis of variance statistic to test the
omnibus null hypothesis in this study.

PROGRESS REVIEW

1. Data were collected from the study participants on the

dependent variable (depressive symptoms) using the CES-D

after the eight-week treatment of the 145 participants who

were randomly assigned to one of the three condition groups

(CBT, IPT, Control).

2. Problems with data accuracy and missing data were ruled out

in the early steps of the data-screening process.

3. The distributions of CES-D scores of the condition groups

were assessed for compliance to meeting the underlying

assumptions of using the one-way ANOVA. The evidence

showed that CES-D distributions of scores on the condition

groups met normality, homogeneity of variance, and inde-

pendence assumptions. The positive results of this screening

assessment allow us to conduct the one-way ANOVA to

determine the effects of the treatment conditions (CBT, IPT,

Control) on depressive symptoms as measured by the CES-D.

One-Way Analysis of Variance of the Omnibus H0

One-Way ANOVA IBM SPSS Commands

1. Click Analyze . click General Linear Model . click Univariate . click
over DepSymptoms under Dependent Variable and Condition under Fixed
Factor(s).
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2. Click on the Plots button . click Condition toHorizontal Axis . click the
Add button . click Continue.

3. Click on Post Hoc button . click over Condition to Post Hoc Tests
for . click on the box next to Tukey and then Continue.

4. Click on the Options button . click on the boxes for Descriptive statis-
tics, Estimates of effect size, and Observed power . the Significance level
should be .05 . click on Continue . click OK.

5. Save generated output as ANOVA Results.

The results of this analysis provide information to test the omnibus null
hypothesis of the study:

H0: There will be no significant mean differences in depressive symptoms
(CES-D scores) across the depression treatment programs (CBT, IPT,
Control) following treatment implementation.

H0: μ1 ¼ μ2 ¼ μ3

The results of the one-way ANOVA are presented next. Additionally,
interpretations are provided for the magnitude of treatment effects (effect sizes),
post hoc power, post hoc multiple comparisons of means, and confidence
intervals for the mean differences.

One-Way ANOVA Results

In the ANOVA output labeled Tests of Between-Subjects Effects you will see the
name of the independent variable (Condition) under the heading Source that
we created when the data were entered (see Table 7.8). We will be using the
information in this row to make a decision about rejecting the null hypothesis.

The one-way ANOVA statistic is in the F column (F ¼ 7.909) and the
F-statistic is significant at the p ¼ .001 probability level from the Sig. column.
The criterion that we selected to make a decision about rejecting the null
hypothesis was α ¼ .05. The significant statistic probability of .001 is less than
α ¼ .05, so the decision is to reject the null hypothesis that the population’s
means that we are estimating with sample means are equal. There is a less than 5
percent chance that we rejected a true H0 ( p , .05). Only five times in 100
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TABLE 7.8 One-Way Analysis Results

Tests of Between-Subjects Effects

Dependent Variable: DepSymptoms

Source

Type III
Sum of
Squares df

Mean
Square F Sig.

Partial Eta
Squared

Noncent.
Parameter

Observed
Powerb

Corrected model 665.985a 2 332.992 7.909 .001 .100 15.818 .951

Intercept 50,553.552 1 50,553.552 1,200.732 .000 .894 1,200.732 1.000

Condition 665.985 2 332.992 7.909 .001 .100 15.818 .951

Error 5,978.525 142 42.102

Total 57,518.000 145

Corrected total 6,644.510 144

a R-squared ¼ .100 (adjusted R-squared ¼ .088)
b Computed using alpha ¼ .05
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would there be no difference between means. If one repeatedly took three ran-
dom samples from the same population and tested the differences between their
means, one would expect to get a difference that was significant at the .05 level
about five times in 100 (Nickerson, 2000).

Thus, there is a significant difference among the means of the three groups
(CBT, IPT, and Control) on depressive symptoms. We can write this finding of
the omnibus hypothesis as F(2, 142) ¼ 7.909, p , .05. The value 2 represents
the degrees of freedom associated with the treatment (Condition) and the 142
reflects the degrees of freedom associated with error. The p symbol could also be
stated as p ¼ .001 since an α ¼ .05 was stated before the data were analyzed,
which allows for a comparison between the alpha criterion and the derived sta-
tistic probability.

HYPOTHESIS TESTING STEP 6: MAKE DECISION
REGARDING THE H0 AND INTERPRET POST HOC
EFFECT SIZES AND CONFIDENCE INTERVALS

We can conclude, at this point, that there are mean differences in depressive
symptoms somewhere across the condition groups. We will assess where the mean
differences are among the three possible paired means after interpreting the
magnitude of treatment effect and post hoc power.

Magnitude of Treatment Effect—Post Hoc Effect Size

Again refer to the Tests of Between-Subject Effects table of the ANOVA results
output (see Table 7.8). You see an eta-squared value (η2 ¼ .100) on the Con-
dition line next to the Sig. value. Eta-squared is a measure of practical significance
and is referred to as a post hoc effect size or magnitude of treatment effect. Eta-
squared values range from 0 (small) to 1.0 (large).

It is a ratio of the variance explained by the independent variable in relation to
the total variance. The term partial eta-squared is most relevant when an ANOVA
design results in analyses of several independent variables and interactions
between the independent variables.

There are several different effect sizes, and η2 is one that is commonly used.
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We can interpret the η2 ¼ .100 by converting the fraction to a percentage by
moving the decimal two spaces to the right, and can report that approximately
10 percent of the change in the dependent variable (depressive symptoms) can be
attributed to the independent variable (depression treatment program). The
η2 ¼ .100 has a medium strength effect according to Cohen’s convention for η2

where approximately 1 percent to 6 percent is small, >6 percent to 14 percent is
medium, and >14 percent is large. There is clearly a meaningful magnitude of
treatment effect of the depression treatment program on decreasing depressive
symptoms.

Post Hoc Power

You remember that we estimated the probability of correctly rejecting a false null
hypothesis prior to conducting the study resulting in a priori power results
conducive to conducting the study. The observed post hoc power after the study
was conducted is reported in the Between-Subjects Effects output under Observed
Power for Condition (see Table 7.8). The post hoc power is .951, indicating that
given a post hoc effect size of .100, an α of .05, and a sample size of 145, the
probability is approximately 95 times in 100 that we correctly rejected a false null
hypothesis. So, the a priori power analysis results were a good prediction and
quite congruent with our post hoc power ¼ .951 in the probability of correctly
rejecting a false null hypothesis. The actual effect size (post hoc) generated in this
study of .100 is lower than the estimated (a priori) effect size of .296. However,
the a priori power was more than sufficient in this study.

Post Hoc Multiple Comparisons of Means

We have concluded that there is an overall significant difference among the group
means of depressive symptoms resulting from the depression treatment program
(CBTM ¼ 17.333, IPTM ¼ 17.021, ControlM ¼ 21.680). It also is useful to
find out specifically which pairs of group means are different from each other.
The results of a posthoc analysis of multiple mean comparisons are interpreted
next using the Tukey honestly significant difference (HSD) statistic. The Tukey
HSD is a commonly used post hoc analysis technique used for all pairwise
comparisons of means (Norusis, 2005).
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You recall that the omnibus alternative hypothesis stated that there will be
significant lower mean depressive symptoms (CES-D scores) between the
depression treatment programs of CBT and IPT when compared to the Control
condition following treatment implementation, HA: (μ1 6¼ μ2) , μ3. Thus, the
focus of the post hoc analysis is to assess whether the CBT and IPT depression
treatment programs significantly reduced depressive symptoms among the par-
ticipants when compared to the control group. The extent that CBT and IPT
produced a similar reduction in depressive symptoms also will be assessed.

The output called Multiple Comparisons shows the three possible multiple
mean comparisons of CBT versus IPT, CBT versus Control, and IPT versus
Control using the Tukey HSD statistic (see Table 7.9). The significance values are
corrected for multiple comparisons being analyzed. The statistic probability for the
mean difference between the CBT (M ¼ 17.333) versus IPT (M ¼ 17.021) is
.970, which is greater than the alpha criterion of α ¼ .05, so we fail to reject the
null ( p . .05). The mean comparison of CBT (M ¼ 17.333) and Control
(M ¼ 21.680) is significant ( p , .05) since the statistic probability of .003
is less than α ¼ .05. Finally, the mean comparison of IPT (M ¼ 17.021) and

TABLE 7.9 HSD Post Hoc Analysis

Multiple Comparisons

DepSymptoms Tukey HSD

(I)
Condition

(J)
Condition

Mean
Difference

(I � J)
Std.
Error Sig.

95% Confidence
Interval

Lower
Bound

Upper
Bound

CBT IPT .31 1.332 .970 22.84 3.47

Control 24.35* 1.311 .003 27.45 21.24

IPT CBT 2.31 1.332 .970 23.47 2.84

Control 24.66* 1.318 .002 27.78 21.54

Control CBT 4.35* 1.311 .003 1.24 7.45

IPT 4.66* 1.318 .002 1.54 7.78

Based on observed means.

The error term is Mean Square(Error) ¼ 42.102.

* The mean difference is significant at the .05 level.
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Control (M ¼ 21.680) is significant ( p , .05) since the statistic probability of
.002 is less than α ¼ .05.

The multiple mean comparisons support the directional alternative hypoth-
esis that both the CBT and IPT depression treatment programs significantly
reduce depressive symptoms among participants compared to a no-treatment
control condition. Neither the CBT nor the IPT showed superiority in reduc-
ing depressive symptoms when they are compared with each other; CBT
(M ¼ 17.333) and IPT (M ¼ 17.021), p . .05.

Applying Jones and Tukey’s (2000) approach, we can conclude that the
paired-means differences are (μ1 � μ3) , 0 ( p ¼ .003) and (μ2 � μ3) , 0
( p ¼ .002). The difference in depressive symptoms comparing the CBT to IPT
conditions (μ1 � μ2) is indefinite.

Confidence Intervals of Mean Differences

A confidence interval (CI) provides information about the probability that a given
interval will encircle the true difference between the population means. The
probability used for the confidence interval is .95 since α ¼ .05 in this study.

The .95 CI for each mean difference is provided in the output under the
Multiple Comparisons table (see Table 7.9). These confidence intervals are cor-
rected since we are making several (three) comparisons and have a wider range
than would be expected if we were not adjusting for multiple comparisons. The
interpretations of the mean difference confidence intervals for the two paired-
mean comparisons that are significant (μ1 vs. μ3 and μ2 vs. μ3) are presented next.
The .95 CI interval for the means difference in depressive symptoms for com-
paring the CBT and Control conditions is (�7.45)� (�1.24). The probability is
.95 that this interval will include the true mean differences between the popu-
lation means of depressive symptoms between the CBT and control conditions
for adolescents. The .95 confidence interval for the means difference in depressive
symptoms comparing IPT to Control is (�7.78)� (�1.54), and this interval will
include the true means difference between the population means of depressive
symptoms 95 times in 100. These mean differences are due to sampling from
populations where the mean of the control group is not equal to the means of
the CBT or IPT condition participants. It is important to note that the upper
limit of both .95 intervals is a negative value that reflects a reduction in depressive
symptoms.
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PROGRESS REVIEW

1. The omnibus H0: μ1 ¼ μ2 ¼ μ3 was rejected (p , .05), indi-

cating the existence of significant mean differences.

2. The overall magnitude of treatment effect of the independent

variable (depression treatment method) on the dependent

variable (depressive symptoms) was a medium effect,

η2p ¼ :100.

3. The post hoc power of .951 was considerably larger than the

criterion of .80, which is consistent with our a priori power

analysis results.

4. The post hoc paired-means comparisons using the Tukey HSD

showed that CBT and IPT both produced significant lower

(p , .05) depressive symptoms when compared to the Con-

trol condition. Therewas no significant differencebetween the

CBT and IPT groups on reducing depressive symptoms.

5. The .95 confidence intervals for the mean differences reflec-

ted decreases in depressive symptoms of CBT versus Control

and IPT versus Control.

FORMULA CALCULATIONS OF THE STUDY RESULTS

The formula calculations for the one-way ANOVA, Tukey HSD, post hoc effect
sizes, and confidence intervals are presented next.

One-Way ANOVA Formula Calculations

The specifications for constructing an ANOVA summary table are presented
first. The information in this table captures most of the important data needed to
conduct the ANOVA. Additionally, the information in Table 7.10 will be useful
for calculating the HSD, post hoc effect sizes, and confidence intervals. We will

c07 18 June 2012; 19:9:48

166 � CHAPT ER 7



complete the ANOVA summary table for this study after we calculate the nec-
essary formulas.

ANOVA Formulas

There are several formulas that can be used to compute the ANOVA. We are
using descriptive formulas to calculate mean square treatment (MST) and mean
square error (MSE) terms. The means, group sizes, and variances that you will
need to use for the formulas can be found in Table 7.1.

MST ¼ n1ðM1 �MtotÞ2 þ n2ðM2 �MtotÞ2 þ n3ðM3 �MtotÞ2 þ?
K � 1

where
n1, n2, n3 = number of participants in each condition group

M1, M2, M3 = means of each condition group

Mtot = grand mean

Grand Mean

All of the values to complete the formulas are in the Descriptive Statistics table
except for the grand mean (MTOT), which is calculated next using a weighted
process since the group sizes are unequal.

TABLE 7.10 ANOVA Summary Table Specifications

Source of Variation df Sum of Squares (SS) Mean Square (MS) F

Treatment (T) K 2 1 (dfT)(MST) Formula MST
MSE

Error (E) NTOT 2 K (dfE)(MSE) Formula —

Total (TOT) NTOT 2 1 (dfT)(MST) 1 (dfE)(MSE) — —

dfT ¼ K 2 1 is the treatment degrees of freedomwhere K is the number of treatments, groups, or

means.

dfE ¼ NTOT 2 K is the error degrees of freedom. The degrees of each group is (n 2 1 df ), which

is summed across all treatments or groups.

dfTOT ¼ NTOT 2 1 is the total degrees of freedombased onN scoreswith one score unable to vary.
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Mtot ¼ n1ðM1Þ þ n2ðM2Þ þ n3ðM3Þ
N

¼ 48ð17:333Þ þ 47ð17:021Þ þ 50ð21:680Þ
145

¼ 831:984þ 799:987þ 1084
145

¼ 2715:971
145

Mtot ¼ 18:731

Mean Square Treatment

Now, with the grand mean we can solve for the mean square treatment term.

MST ¼ 48ð17:333�18:731Þ2þ47ð17:021�18:731Þ2þ50ð21:680�18:731Þ2
2

¼ 48ð�1:398Þ2þ47ð�1:710Þ2þ47ð2:949Þ2
2

¼ 48ð1:954Þþ47ð2:924Þþ50ð8:697Þ
2

¼ 93:792þ137:428þ434:850
2

¼ 666:07
2

MST ¼ 333:035

Mean Square Error

Next, we will solve for the mean square error term.
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MSE ¼ ðn1 � 1ÞS21 þ ðn2 � 1ÞS22 þ ðn3 � 1ÞS23 þ?
ðn1 � 1Þ þ ðn2 � 1Þ þ ðn3 � 1Þ?

¼ ð48� 1Þ38:780þ ð47� 1Þ35:934þ ð50� 1Þ51:079
ð48� 1Þ þ ð47� 1Þ þ ð50� 1Þ

¼ ð47Þ38:780þ ð46Þ35:934þ ð49Þ51:079
47þ 46þ 49

¼ 1,822:660þ 1,652:964þ 2,502:871
142

¼ 5,978:495
142

MSE ¼ 42:102

ANOVA Summary Table

Refer to the specifications in Table 7.10 that were used to calculate MST and
MSE values in the ANOVA summary table (Table 7.11).

Graphical Representation of Findings

Figure 7.6 shows a visual representation of the findings. A critical value (CV) is
obtained using an online calculator.

Go to www.danielsoper.com . select Statistics Calculators . select
F-Distribution . select Critical F-value Calculator . type in 2 next
to Degrees of freedom 1: . type 142 next to Degrees of freedom
2: . type 0.05 beside Probability level: . click on Calculate!

TABLE 7.11 ANOVA Summary Table

Source of Variation df Sum of Squares (SS) Mean Square (MS) F

Treatment (T) 2 666.070 333.035 333:035

42:102

F ¼ 7:910

Error (E) 142 5,978.484 42.102 —

Total (TOT) 144 6,644.554 — —
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The F critical value is 3.05983069, rounded to 3.06. We place the F critical
value on the abscissa (base of the curve) of the F-distribution curve. Then, we
place the obtained omnibus ANOVA value of F ¼ 7.91 on the curve. The area of
rejection begins on the abscissa at the CV, and any obtained F to the right of the
CV informs us to reject the null hypothesis. Our Fobtained ¼ 7.91 falls in the area
of rejection to the right of the CV ¼ 3.06, so we reject the H0, concluding that if
the null hypothesis is true we would have obtained results like these less than
5 percent of the time. There is a difference in depressive symptoms across the
three conditions at the .05 level of significance.

Tukey HSD Test for Multiple Comparisons

A calculation of theTukeyHSD is presented next. First, theHSD formulas for equal
and unequal sample sized groups are presented. Since we have unequal samples, we
will initially compute a weighted sample size value using the harmonic mean.

Tukey HSD with Equal Sample Sizes by Group

q:05
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE=n

p

Tukey HSD with Unequal Sample Sizes by Group

q:05
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE=nh

p

FIGURE 7.6 Hypothesis Testing Graph—One-Way ANOVA

0

Area of Retention

Fcrit. � 3.06 Fobt. � 7.91

Area of Rejection

1 2 3 4 5 6 7 8 9 10 11 12 . . .
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where q.05 is the Studentized range statistic that is a linear function of t, where
q ¼ t

ffiffiffi
2

p
(Howell, 2007). Using the q allows us to adjust the critical value (CV)

of q for the number of means (three) involved in our post hoc analysis. To obtain
a q.05, go to the following online calculator.

Google VassarStats . click on VassarStats : Statistical Computation Web
Site . under Site Map click on Utilities . click on Statistical Tables
Calculator . click on critical values of Q . under K type 3 and under
df type 142 . click on Calculate. This results in q.05 ¼ 3.35.

MSE ¼ 42:102,

nh ðharmonic mean of unequal n’sÞ ¼ K
1=n1 þ 1=n2 þ 1=n3 : : :

¼ 3
1=48þ 1=47þ 1=50

¼ 3
:021þ :021þ :020

¼ 3
:062

nh ¼ 48:39

Tukey HSD with Unequal-Sized Groups

HSD ¼ 3:35
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
42:102=48:39

p
¼ 3:35

ffiffiffiffiffiffiffiffiffi
:870

p

¼ 3:35ð:933Þ
HSD ¼ 3:126

The mean differences of the three pairs of means are presented in Table 7.12.
Any mean difference that is larger than our calculated HSD statistic of 3.126 is
significantly different. Depressive symptoms are significantly lower ( p , .05)
following the CBT and IPT conditions when compared to the Control condition
(see Table 7.9).
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Post Hoc Effect Sizes

We are going to calculate the post hoc effect sizes that relate directly to the
findings of the one-way ANOVA. The partial eta-squared is a descriptive measure
of the magnitude of treatment effects that was reported in the IBM SPSS output.
We will also calculate omega-squared (ω2), which is a more conservative estimate
of the population effect size and is not provided in the IBM SPSS output.

Eta-Squared (η2)

Eta-squared is a measure of practical significance and is referred to as an effect size
or magnitude of treatment effect. It is a ratio of the variance explained by the
independent variable in relation to the total variance. ANOVA designs may result
in analyses of several independent variables and interactions between the inde-
pendent variables, and eta-squared statistics are computed for each, producing
partial eta-squared values. Eta-squared values range from 0 (small) to 1.0 (large).
There are several different effect sizes, and η2 is commonly used. The η2p ¼ :100

from the ANOVA output and is defined as:

η2 ¼ Treatment ðConditionÞ sum of squares ðSSÞ
Treatment SSþ Error SS

¼ 666:070
666:070þ 5,978:484

¼ 666:070
6,644:554

η2 ¼ :100

TABLE 7.12 Matrix of Mean Differences

Group Means1 M1 5 17.333 M2 5 17.021 M3 5 21.680

CBT M1 ¼ 17.333 — .312 24.347*

IPT M2 ¼ 17.021 — — 24.659*

Control M3 ¼ 21.680 — — —

1 Interpret these mean differences as absolute values ignoring the 1 or 2 signs.

* p , .05; these mean differences are greater than the HSD statistic ¼ 3.126, so the differences

are significantly different.
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We can interpret the η2 ¼ .100 by converting the fraction to a percentage by
moving the decimal two spaces to the right, and report that approximately 10
percent of the change in the dependent variable (depressive symptoms) can
be attributed to the independent variable (depression treatment program). The
η2 ¼ .100 has a medium strength effect according to Cohen’s convention where
approximately 1 percent to 6 percent is low,.6 percent to 14 percent is medium,
and .14 percent is large. There clearly is a meaningful magnitude of treatment
effect of the depression treatment program on decreasing depressive symptoms.

Omega-Squared (ω2)

Omega-squared is another useful effect size that is more conservative (lower) because
it estimates effect size between the IV and the DV in the population (Tabachnick &
Fidell, 2007). Eta-squared provides more of a descriptive effect size of the impact of
the IV on the DV in a study. Omega-squared also ranges from 0 to 1.0.

ω2 ¼ SSTreatment � ðK � 1ÞMSError
SSTotal þMSError

where SSTreatment ¼ condition sum of squares

K ¼ number of condition groups

MSError ¼ error mean square

SSTotal ¼ total sum of squares

Omega-squared is not reported in the Tests of Between-Subjects Effects
output but it can be calculated using information from the table.

ω2 ¼ 666:070� ð3� 1Þ42:102
6,644:554þ 42:102

¼ 666:070� 84:204
6,686:656

¼ 581:866
6,686:656

ω2 ¼ :087
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The ω2 ¼ .087 indicates that approximately 8.7 percent of the change in the
dependent variable (depressive symptoms) in the population can be attributed to
the independent variable (depression treatment program). The ω2 ¼ .087 is
lower than the η2 ¼ .100 as expected. However, both effect sizes provide similar
perspectives of the magnitude of treatment effect.

Confidence Intervals (.95) for Mean Differences of Significant Pairs

The CI.95 calculations for the mean differences within the three sets of paired
means (CBT vs. IPT, CBT vs. Control, and IPT vs. Control) are presented next.
The calculations closely approximate the confidence intervals displayed in Table
7.9 of the Multiple Comparisons table that were IBM SPSS generated. Minor
differences are related to rounding differences.

HSDCI:95 ¼ ½q:05=
ffiffiffi
2

p �½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSEð1=ni þ 1=njÞ

p �

CBT versus IPT

½3:35=1:414�½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
42:102ð:021þ :021Þp �

½2:369�½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
42:102

p ð:042Þ�
½2:369�½1:330�
3:151

ðCBTM Þ � ðIPTM Þ ¼ ð17:333� 17:021Þ ¼ þ:312

CI:95 Lower limit ¼ þ:312� 3:151 ¼ �2:839

CI:95 Upper limit ¼ þ:312þ 3:151 ¼ þ3:463

CI:95 ¼ ð�2:839ÞμDifferenceðþ3:463Þ

CBT versus Control

½3:35=1:414�½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
42:102ð:021þ :020Þp �

½2:369�½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
42:102ð:041Þp �

½2:369�½1:314�
3:113
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ðCBTM Þ � ðControlM Þ ¼ ð17:333� 21:680Þ ¼ �4:347

CI:95 Lower limit ¼ �4:347� 3:113 ¼ �7:460

CI:95 Upper limit ¼ �4:347þ 3:113 ¼ �1:234

CI:95 ¼ ð�7:460ÞμDifference ð�1:234Þ

IPT versus Control

½3:35=1:414�½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
42:102ð:021þ :020Þp �

½2:369�½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
42:102ð:041Þp �

½2:369�½1:314�
3:113

ðIBTM Þ � ðControlM Þ ¼ ð17:021� 21:680Þ ¼ �4:659

CI:95 Lower limit ¼ � 4:659� 3:113 ¼ �7:772

CI:95 Upper limit ¼ � 4:659þ 3:113 ¼ �1:546

CI:95 ¼ ð�7:772ÞμDifference ð�1:546Þ

ANOVA Study Results

It was hypothesized that two depression treatment programs, cognitive-behavioral
therapy (CBT) and interpersonal therapy (IPT), would significantly reduce
depressive symptoms among adolescents compared to a no-treatment control
group (Control). It was expected that there would be no differences in the effects
of cognitive-behavioral therapy versus interpersonal therapy on reducing
depressive symptoms. The Center for Epidemiological Studies Depression Scale
(CES-D) was used to measure depressive symptoms, and higher scores represent
more self-reported depressive symptoms.

The sample consisted of 145 eighth and ninth grade participants who lived in
suburban, middle-class communities. The average age of the participants was
M ¼ 14.55 (SD ¼ .68), and there was a reasonable balance between females (52
percent) and males (48 percent).

An a priori power analysis was conducted to assess the probability of correctly
rejecting a false null hypothesis. Using an alpha of .05, a sample size of 145, and
an estimated effect size of f ¼ .65, we found that we had adequate power (..80)
to correctly reject a false null hypothesis in favor of the alternative hypothesis.
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The data were screened prior to testing the null hypothesis. The accuracy of the
data set was checked and confirmed. The data set had no missing data or univariate
outliers. The normality of the dependent variable (depressive symptoms) was
assessed for each group. The distributions of depressive symptoms for the CBT and
IPT groups fully met the underlying assumption of normality. The Control group
did not meet the criteria of the Shapiro-Wilk normality statistic. However, the
Control group distribution did meet the normality criteria of the Q-Q normality
plots and the skewness and kurtosis standardized scores. Therefore, the decisionwas
made to proceed with the analyses without modifying the Control group distri-
bution since the preponderance of the evidence supported normality.

The underlying assumption of homogeneity of variance also was met across
the three relatively equal-sized groups. The variance ratio (1.064 , 10.0) and
Levene’s test ( p . .05) both demonstrated homogeneity of variance.

The depressive symptoms mean, standard deviation, and sample size for each
condition in the study were: (1) CBT condition (M ¼ 17.333, SD ¼ 6.227,
n ¼ 48), (2) IPT condition (M ¼ 17.021, SD ¼ 5.995, n ¼ 47), and (3)
Control condition (M ¼ 21.680, SD ¼ 7.147, n ¼ 50).

The adolescent participants across group conditions (CBT, IPT, Control)
were tested for significant differences in depressive symptoms with a one-way
ANOVA using an alpha criterion of α ¼ .05. The omnibus ANOVA analysis
was significant, F(2, 142) ¼ 7.909, p ¼ .001 (or we can state this finding using
the alpha level of the study as p , .05). If the null hypothesis is true, we would
have obtained results like these less than 5 percent of the time. The η2 ¼ .100
(ω2 ¼ .870) is a medium effect size, indicating that approximately 10 percent
(ω2 ¼ 8.70%) of the variability in depressive symptoms can be explained by the
depression treatment programs and control.

A post hoc analysis was conducted to compare all paired means using the
Tukey HSD statistic. Two significant paired mean differences on reduced
depressive symptoms were found between the CBT and the Control participants
( p , .05, or p ¼ .003) and the IPT versus Control participants ( p , .05 or
p ¼ .002). The CBT and IPT conditions produced significantly lower depressive
symptoms, whereas the CBT versus IPT participants showed similar results
( p . .05 or p ¼ .970). In other words, we can conclude that the paired-means
differences were (μCBT � μControl) , 0 ( p ¼ .003) and (μIPT � μControl) , 0
( p ¼ .002). The difference in depressive symptoms comparing the CBT to IPT
conditions (μCBT � μIPT) is indefinite.
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The .95 CI for the means difference between the two significant paired means
were CBT versus Control (�7.45)� (�1.24) and IPT versus Control (�7.78)�
(�1.54). The probability is .95 that these intervals will include the true mean
differences between the population means of depressive symptoms between the
CBT versus Control and the IPT versus Control, respectively. Decreases in
depressive symptoms comprised the lower and upper limits of the .95 confidence
intervals of CBT versus Control and IPT versus Control conditions.

In conclusion, the cognitive-behavioral therapy and interpersonal therapy
depression treatment programs significantly reduced depressive symptoms among
adolescents when compared to a no-treatment control condition. CBT and IPT
were equally effective in reducing depressive symptoms.

SUMMARY

We have demonstrated how a randomized posttest-only control group design
using a one-way analysis of variance statistic is applied to a research problem
within the context of the hypothesis-testing process. Research questions and
hypotheses were developed that incorporated independent and dependent vari-
ables. We established a criterion alpha level considering Type I and II errors. An a
priori power analysis was conducted to assess the fidelity of the study.

Data were entered for computer analyses using the IBM SPSS statistical
program (see data in Table 7.13).We conducted data diagnostics to make sure that
data were accurate and that we met univariate underlying assumptions of nor-
mality, homogeneity of variance, and independence of scores. Confidence intervals
of mean differences and magnitude of treatment effects were discussed. The one-
way ANOVA, Tukey HSD, post hoc effect sizes, and confidence intervals also
were presented using formulas. Finally, we presented a summary of the results.

PROBLEM ASSIGNMENT

The steps involved in conducting a one-way ANOVA using both IBM SPSS and
formulas have been presented in this chapter. Now it is your turn to indepen-
dently work through the steps of the hypothesis-testing process related to a one-
way ANOVA using IBM SPSS. Go to the companion website and you will find a
new one-way ANOVA research problem and data set along with a worksheet to
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TABLE 7.13 One-Way Analysis of Variance Data

ID# DepSymptoms Condition*

1 16 1

2 26 1

3 24 1

4 25 1

5 22 1

6 21 1

7 20 1

8 19 1

9 18 1

10 17 1

11 23 1

12 27 1

13 11 1

14 12 1

15 14 1

16 15 1

17 14 1

18 8 1

19 10 1

20 12 1

21 7 1

22 14 1

23 9 1

24 17 1

25 16 1

26 16 1

27 18 1

28 25 1

29 23 1

30 32 1

31 29 1

32 24 1

33 33 1

34 18 1

35 18 1

36 18 1

37 16 1

38 16 1

39 10 1

40 13 1

41 12 1
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42 13 1

43 11 1

44 8 1

45 12 1

46 17 1

47 17 1

48 16 1

49 26 2

50 20 2

51 24 2

52 25 2

53 23 2

54 22 2

55 21 2

56 20 2

57 18 2

58 29 2

59 25 2

60 29 2

61 32 2

62 27 2

63 10 2

64 11 2

65 12 2

66 13 2

67 14 2

68 15 2

69 12 2

70 11 2

71 14 2

72 8 2

73 10 2

74 12 2

75 10 2

76 14 2

77 5 2

78 8 2

79 12 2

80 17 2

81 17 2

82 17 2

83 17 2

(Continued)
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TABLE 7.13 One-Way Analysis of Variance Data (Continued)

ID# DepSymptoms Condition*

84 17 2

85 16 2

86 16 2

87 16 2

88 16 2

89 16 2

90 16 2

91 18 2

92 15 2

93 18 2

94 18 2

95 18 2

96 29 3

97 30 3

98 33 3

99 35 3

100 26 3

101 27 3

102 28 3

103 23 3

104 30 3

105 28 3

106 21 3

107 32 3

108 29 3

109 27 3

110 28 3

111 32 3

112 32 3

113 32 3

114 32 3

115 21 3

116 22 3

117 22 3

118 26 3

119 21 3

120 16 3

121 18 3

122 12 3

123 13 3

124 20 3
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complete. Use the problem presented in this chapter to guide you as you com-
plete the assignment. Your instructor will evaluate your completed worksheet
when it is finished.

KEY TERMS

alpha criterion (α)

alternative hypothesis

analysis of covariance (ANCOVA)

ANOVA summary table specifications

a priori

a priori power analysis

confidence intervals for the mean

differences

data diagnostics

degrees of freedom

dependent variable (DV)

estimated (a priori) effect size

eta-squared (η2)

exclusion criteria

grand mean (Mtot)

125 20 3

126 16 3

127 23 3

128 18 3

129 19 3

130 18 3

131 10 3

132 13 3

133 11 3

134 13 3

135 10 3

136 20 3

137 12 3

138 15 3

139 23 3

140 16 3

141 12 3

142 20 3

143 14 3

144 21 3

145 15 3

*1 ¼ CBT; 2 ¼ IPT; 3 ¼ Control
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homogeneity of variance

inclusion criteria

independence of observations

independent variable (IV)

kurtosis

leptokurtic

Levene’s statistic

magnitude of treatment effects

(effect sizes)

mean square error (MSE)

mean square treatment (MST)

mesokurtic

missing data analysis

multifactor ANOVA (factorial ANOVA)

multivariate ANOVA

negatively skewed (left-skewed)

distribution

normality

normal Q-Q plots

no-treatment control condition

null hypothesis

omega-squared (ω2)

operationally defined (OD)

outliers

platykurtic

positively skewed (right-skewed)

curve

post hoc multiple comparisons of

means

post hoc power

power

purposive sampling of typical

instances

randomized posttest-only control

group design

randomly assigned

repeated-measures ANOVA

(RM-ANOVA)

Shapiro-Wilk (S-W) statistic

Tukey honestly significant difference

(HSD) statistic

Type I (alpha) error

Type II (beta) error

univariate parametric assumptions

weighted by sample size
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Chapter 8

REPEATED-TREATMENT

DESIGN USING A

REPEATED-MEASURES

ANALYSIS OF VARIANCE

LEARNING OBJECTIVES

� Demonstrate how to develop research questions and
hypotheses as they relate to a research problem incorpo-
rating independent and dependent variables.

� Identify the components and application of a repeated-
treatment research design.

� Examine Type I and II error considerations and a priori
power analysis in establishing alpha (α).

� Conduct data diagnostics to assess for normality and
sphericity.
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� Execute a repeated-measures analysis of variance (RM-
ANOVA), profile plots, and Fisher’s protected least sig-
nificant differences (PLSD) pairwise mean analysis using
SPSS and formulas.

� Interpret post hoc analyses using eta-squared (η2), trend
analysis, and confidence intervals.

� Understand the study findings combining the various
analyses.

A repeated-measures analysis of variance (RM-ANOVA) is used to
evaluate if support partners added to weight loss treatment can improve
weight loss among persons who are overweight. Research questions and

hypotheses are developed that anticipate that adding support partners to treat-
ment will improve the outcome of weight loss. A repeated-treatment design is
used with one group of persons who are overweight. A data set is presented that
is used for both IBM SPSS and formula analyses.

An a priori power analysis is conducted to determine if the sample size,
estimated effect size, and alpha level are adequate to proceed with the study.
An RM-ANOVA is applied to test the overall (omnibus) null hypothesis. The
magnitude of treatment effects is assessed using both eta-squared and omega-
squared effect size measures. Post hoc analyses are conducted using profile plots,
the Fisher’s protected least significant differences (PLSD) statistic, and trend
analysis. The .99 confidence intervals are interpreted for the mean differences
between condition group means. Finally, the overall results are presented.

RESEARCH PROBLEM

The focus of this simulated research problem is to assess whether the use of
friends (support partners) in behavioral weight control treatment (BWCT) can
improve the weight loss outcomes of persons who are overweight. Gorin et al.
(2005) found that support partners can improve the weight loss of individuals
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who are overweight if the support partners are also successfully losing weight
during the treatment program.

There are 35 participants who are overweight in this study who were randomly
selected from a large weight loss center in a metropolitan area in the United States.
The participants’ average age is 40 years old (SD ¼ 3.20). Each participant has a
support partner (friend) who is also participating in the behavioral weight control
treatment, and the friends’ average age is 41 (SD ¼ 5.23).

The participants’ weight is measured before the treatment begins. The
treatment program begins with a behavioral weight control treatment includ-
ing the support partners. After three months, the weight loss in pounds of the
participants is measured and recorded. Next, the behavioral weight control
treatment is continued for three months but without having the support partners
participate. Again, the weight loss is assessed. The support partners are reinsti-
tuted to the behavioral weight control treatment for another three months, fol-
lowed by a weight loss measurement. Finally, participants experience another
three months of BWCT with support partners and the last assessment is made.

STUDY VARIABLES

The independent variable, weight loss intervention, and how it was operationally
defined in this study are described next. Moreover, the dependent variable, weight
loss, and its operational definition are identified.

Independent Variable

The independent variable (IV) in this study problem is weight loss intervent-
ion. The IV is operationally defined as a behavioral weight control treatment
(BWCT) with the addition or removal of support partners. BWCT involves the
daily self-monitoring of calories, fat, and activity. Goals are established to
maintain 1,200 to 1,500 calories per day, 20 percent calories from fat, and 150
minutes of moderate activity each week. Individuals also participate in behavioral
modification activities.

Support partners have several important roles to provide support and share
the journey in the treatment of persons who are overweight. They establish
cooperative, mutual goals toward weight loss. Support partners are counted on to
reach the shared goals that work the best for both individuals. Support partners
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are available and willing to communicate consistently. Support partners must be
able to determine what unique kinds of encouragement work best with a given
individual. The format of the operationally defined conditions of the IV (weight
loss intervention) are: (1) BWCT and support partners (three months), (2) BWCT
with support partners removed (three months), (3) BWCT with support partners
reinstituted (three months), and (4) BWCT with support partners continued
(three months). The study extends over 12 months.

Dependent Variable

The dependent variable (DV) is weight loss in pounds from the baseline measured
weight of the participants over the 12 months of the study. The operational
definition of weight loss is the loss in pounds from their baseline weight before the
treatment began. Weight loss is measured, recorded, and compared at three
months, six months, nine months, and 12 months.

RESEARCH DESIGN

The research design used for this research example is a repeated-treatment design
(Shadish, Cook, & Campbell, 2002). Initially, a randomly selected group of
participants who are overweight are weighed at baseline before treatment. Then,
each participant’s weight loss is measured and recorded after three months of
treatment with partner support (at three months), after three months when
partner support is removed (at six months), after three months when partner
support is added back to treatment (at nine months), and after the treatment with
partner support is continued for three months (at 12 months). The repeated-
treatment design with one group is diagrammed and explained in Figure 8.1.

Statistical Analysis: Repeated-Measures Analysis of Variance

The one-way ANOVA that we used previously was a between-subjects statistical
design. Independent groups producing independent scores were compared for
mean differences. In this study, a repeated-measures ANOVA (RM-ANOVA) is
used, which is a within-subjects design in which participants experience more than
one treatment condition and are measured more than once on a dependent
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variable. The RM-ANOVA generalizes from the dependent t-test and allows for
more than two measurements on the same individuals. In the next chapter, we
conduct a factorial ANOVA that integrates a within-subjects IV and a between-
subjects IV. However, a factorial ANOVA can also involve only between-subjects
IVs. If the statistical design has both between-subjects effects and within-
subjects effects, it is called a mixed-subject ANOVA statistical design.

Three common uses of repeated-measures ANOVA involve: (1) the same
participants measured repeatedly over time (see Figure 8.2), (2) the same parti-
cipants measured under different conditions (see Figure 8.3), and (3) matched
pairs of participants measured under different conditions (see Figure 8.4).

In this study, we are studying the same participants measured repeatedly over
time. The following three underlying assumptions need to be met in order to use
the RM-ANOVA.

FIGURE 8.1 Repeated-Treatment Design with One Group for
Study Example

OBaseline X1With O1 X2RemoveO2 X2AddO3 X4ContinueO4

OBaseline ¼ Weight measurement of participants before treatment

X1With ¼ Treatment with partner support for three months

O1 ¼ Weight loss measurement at three months

X2Remove ¼ Treatment with removal of partner support for three months

O2 ¼ Weight loss measurement at six months

X3Add ¼ Treatment with added partner support for three months

O3 ¼ Weight loss measurement at nine months

X4Continue ¼ Treatment with continued partner support for three months

O4 ¼ Weight loss measurement at 12 months

FIGURE 8.2 Same Participants Measured Repeatedly over Time

Participants SameMeasT1 SameMeasT2 SameMeasT3 . . .

Person 1 1st score 2nd score 3rd score

Person 2 1st score 2nd score 3rd score

Person 3 1st score 2nd score 3rd score

Person 4 1st score 2nd score 3rd score

. . . .

. . . .

. . . .
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1. The scores of participants are independent from the scores of all other par-
ticipants, known as independence of scores.

2. Variables are assumed to be normally distributed around zero within each
treatment.

3. The group variances and the covariances are assumed to be homogeneous
across treatments, which is known as sphericity.

PROGRESS REVIEW

1. The research problem focuses on whether adding support

partners to behavioral weight control treatment can increase

FIGURE 8.3 Same Participants Measured under Different Conditions

Participants Condition 1 Condition 2 Condition 3 . . .

Person 1 1st score 2nd score 3rd score

Person 2 1st score 2nd score 3rd score

Person 3 1st score 2nd score 3rd score

Person 4 1st score 2nd score 3rd score

. . . .

. . . .

. . . .

FIGURE 8.4 Matched Pairs of Participants Measured under Different
Conditions

Participants Condition 1 Matched Participants Condition 2

Person 1 Score Person matched Score

Person 2 Score Person matched Score

Person 3 Score Person matched Score

Person 4 Score Person matched Score

. . . .

. . . .

. . . .
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weight loss among persons who are overweight. A repeated-

treatment research design is used.

2. The independent variable is weight loss intervention and

is operationally defined as BWCT with the addition or rem-

oval of support partners: (1) BWCT and support partners

(three months), (2) BWCT with support partners remo-

ved (three months), (3) BWCT with support partners

reinstituted (three months), and (4) BWCT with support

partners continued (three months). The dependent variable is

weight loss and is operationally defined as number of pounds

lost at three, six, nine, and 12 months.

3. Thirty-five personswho are overweight are randomly selected

from a large weight loss center, and the same participants

experience four treatment conditions and four weight loss

measures.

4. The changes in weight loss of the participants across the

conditions are assessed using the repeated-measures

ANOVA statistic.

5. Next, the research question is stated and we begin complet-

ing the steps of the hypothesis-testing process.

STATING THE OMNIBUS (COMPREHENSIVE)
RESEARCH QUESTION

The initial research question is stated. Then, the steps of the hypothesis-testing
process related to this research problem will be presented following the statement
of the research questions.

Omnibus Research Question (RQ)

Will there be significantly more weight loss (number of pounds) among persons
who are overweight when support partners are included in a behavioral weight
control treatment?
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HYPOTHESIS TESTING STEP 1: ESTABLISH THE
ALTERNATIVE (RESEARCH) HYPOTHESIS (Ha)

The omnibus (comprehensive) alternative hypothesis is stated next in both nar-
rative and symbolic formats. Subquestions and subhypotheses follow the overall
analysis.

Omnibus Narrative Alternative Hypothesis (Ha)

Ha: There will be significantly more weight loss (number of pounds)
among persons who are overweight when support partners are included
with BWCT compared to BWCT alone using the following schedule
over 12 months: (1) BWCT and support partners (three months),
(2) BWCT with support partners removed (three months), (3) BWCT
with support partners reinstituted (three months), and (4) BWCT with
support partners continued (three months).

Symbolic Ha

Ha : μ1Withsupport . μ2Removesupport, ðμ3 Addsupport, μ4ContinuesupportÞ

where μ1Withsupport is the population mean of weight loss of participants in
the BWCT with support partners condition being estimated by the
sample mean.

μ2Removesupport is the population mean of weight loss of participants in
the BWCT with support partners removed condition being estimated
by the sample mean.

μ3Addsupport is the population mean of weight loss of participants in the
BWCT with support partners added back condition being estimated
by the sample mean.

μ4Continuesupport is the population mean of weight loss of participants in
the BWCT with support partners continued condition being esti-
mated by the sample mean.

This is a directional alternative hypothesis because it is expected that the three
conditions that have support partners included with BWCT will produce more
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weight loss than when support partners are removed. It also is expected that
the three conditions with support partners will not differ from each other in the
amount of resulting weight loss.

An alternative process to reach conclusions in analyzing one’s sample
data is following the recommendations of Jones and Tukey (2000). Act as
if: (1) (μ1Withsupport 2 μ2Removesupport) . 0, (μ3Addsupport 2 μ2Removesupport) . 0,
(μ4Continuesupport 2 μ2Removesupport) . 0, or (2) (μ1Withsupport 2 μ2Removesupport) ,
0, (μ3Addsupport 2 μ2Removesupport) , 0, (μ4Continuesupport 2 μ4Continuesupport) , 0; or
(3) the sign (, 0 or . 0) of (μ1Withsupport 2 μ2Removesupport), (μ3Addsupport 2
μ2Removesupport), (μ4Continuesupport 2 μ2Removesupport) is indefinite. Using this
approach, we will be making conclusions about whether omnibus and paired-mean
differences are greater than zero or less than zero, or that the findings are incon-
clusive about whether one mean is greater or less than zero. In this study, we are
expecting that the three conditions that combine BWCTwith support partners will
significantly increase weight loss when compared to the BWCT without support
partners. Thus, we expect to make the following conclusions: (μ1Withsupport 2

μ2Removesupport) . 0, (μ3Addsupport 2 μ2Removesupport) . 0, (μ4Continuesupport 2
μ2Removesupport) . 0.

HYPOTHESIS TESTING STEP 2: ESTABLISH THE
NULL HYPOTHESIS (H0)

The omnibus null hypothesis is stated in narrative and symbolic formats in the
second step of the hypothesis-testing process.

Omnibus Narrative Null Hypothesis (H0)

There will be no significant weight loss (number of pounds) among persons who
are overweight when support partners are included with BWCT compared to
BWCT alone using the following schedule over 12 months: (1) BWCT and
support partners (three months), (2) BWCT with support partners removed
(three months), (3) BWCT with support partners reinstituted (three months),
and (4) BWCT with support partners continued (three months).

Symbolic H0

H0: μ1Withsupport ¼ μ2Removesupport ¼ μ3 Addsupport ¼ μ4Continuesupport
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HYPOTHESIS TESTING STEP 3: DECIDE ON A RISK LEVEL
(ALPHA) OF REJECTING THE TRUE H0 CONSIDERING

TYPE I AND II ERRORS AND POWER

Wewill be choosing an alpha criterion (α) that we will use tomake a decision about
whether to reject a true null hypothesis (H0) in this step of the hypothesis-testing
process. We consider the balancing act between Type I (alpha) and Type II (beta)
errors. Then, we will use our chosenα level and combine it with anticipated sample
size and an estimated (a priori) effect size and determine whether we have enough
power (a priori) to conduct the study. Power is the probability of correctly rejecting a
false null hypothesis in favor of an alternative hypothesis.

Selecting Alpha (α) Considering Type I and Type II Errors

Previous studies have shown that including support partners with behavioral weight
control treatment increases weight loss when compared to BWCT alone. We will
use a stricter alpha criterion of α ¼ .01 for this study since we will be replicating
past studies. This increases the probability of not making a Type I error, which is
rejecting a true null (nomean differences). This will providemore confidence in our
decision if the support partner conditions with BWCT significantly increase weight
loss when compared to the BWCT condition alone (reject H0). However, if we
don’t reject the null that there are differences, theα ¼ .01 increases the probability
ofmaking aType II error of failing to rejectH0when there are significant differences
in means (false H0).

A Priori Power Analysis

It is important to assess whether key elements are in place to find a significant dif-
ference inmeans on the dependent variable across the conditions if it exists before we
conduct the study (a priori) or analyze data. Therefore, we will conduct an a priori
power analysis that is the probability associated with correctly rejecting a false null
hypothesis (see Figure 3.1 from previous Chapter 3). Initially, the a priori power
analysis is conducted before participants are selected and assigned to conditions so
that decisions can be made about study modifications such as increasing sample size
before the study actually begins. If the selected number of participants is lower than
the number of participants planned prior to selection, then power analysis is
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conducted again to see if the number is acceptable. In our example, we are going
to conduct an a priori power analysis after participant selection and assignment to
condition before the data are analyzed.

The three key elements used to conduct an a priori power analysis are alpha,
sample size, and estimated effect size (a priori). For an RM-ANOVA, we also
need an a priori value for the correlation between the repeated measures. In the
previous study, average correlation across the repeated measures was raverage ¼ .55.
We have decided to use an alpha of .01 and we are planning on using a sample
size of 35. Now we need to estimate an effect size and then we can combine the
three elements to identify the probability of correctly rejecting a false null
hypothesis (power). An effective method for estimating an effect size for the a
priori power analysis is to use effect sizes resulting from previous studies that use
similar variables and designs to those we will use in our study.

We are going to use findings obtained from a very similar previous study that
resulted in a partial eta-squared: η2p ¼ :35. We now have the elements (α ¼ .01,

η2p ¼ :35, N ¼ 35, raverage ¼ .55) necessary to conduct a power analysis for the

RM-ANOVA. We will use G*Power 3.1 to determine if our key elements
combined result in an acceptable power $.80 (see Figure 8.5).

Power Analysis Using G*Power 3.1.2

1. Open up the G*Power 3.1.2 program.

2. Select F tests under Test family . under Statistical test, select ANOVA:
Repeated measures, within factors . under Type of power analysis, select
A priori: Compute required sample size - given α, power, and effect size.

3. Click on the button called Determine to the left of Effect size f . a new
window opens to the right . click on the Direct button . beside η2

p type
in our partial eta-squared of .35 . click on the button that says Calculate
and transfer to main window . and click on Close.

4. In the main window is the f ¼ .7337994 that was calculated using the
η2p ¼ :35 . besideα err prob, type .01 . besidePower (1-β err prob), type
0.80 . beside Number of groups, type 1 . beside Number of measure-
ments, type 4 . beside Corr among rep measures, type 0.55 . leave the 1
next to Nonsphericity correction e . click on the Calculate button.
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The power analysis results show that we would need only a total sample
size ¼ 6 participants to reach a power $.80; in the analysis the power was .901
(rounded). Our total sample of 35 far exceeds a needed sample size of 6. Con-
sidering the combined elements in our study of total sample size of 35,
f ¼ .7337994, and α ¼ .01, and an average correlation of measures ¼ .55, a
power greater than .80 should be achieved. We are therefore confident that we
will correctly reject a false H0 in our study and avoid making a Type II error.

FIGURE 8.5 Power Analysis for the RM-ANOVA Problem
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PROGRESS REVIEW

1. The research question for the study problem was stated.

2. The first two steps of the hypothesis-testing process were

completed by stating the alternative and null hypotheses in

narrative and symbolic formats.

3. We decided on the risk we are willing to take when rejecting a

true null hypothesis and chose α ¼ .01, which was believed to

be a reasonable balance in our study to avoid making a Type I

or Type II error.

4. We conducted a power analysis to make sure that our proba-

bility of correctly rejecting a false null hypothesiswas adequate

(power ¼ .80) before continuing with the study as planned.

AG*Poweranalysis confirmedthat theapriori powerwas larger

than .80, allowing us to continue the study with confidence.

HYPOTHESIS TESTING STEP 4: CHOOSE APPROPRIATE
STATISTIC AND ITS SAMPLING DISTRIBUTION TO TEST THE

H0 ASSUMING H0 IS TRUE

The RM-ANOVA will be used to test the null hypothesis:

H0 : μ1Withsupport ¼ μ2 Removesupport ¼ μ3Addsupport ¼ μ4Continuesupport

We are comparing the means of weight loss across the four conditions for
significant differences using the F-distribution. The RM-ANOVA is appropriate
to use because: (1) the same participants are being measured more than two
times, (2) there is one dependent variable, and (3) the dependent variable is
continuously scaled.
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HYPOTHESIS TESTING STEP 5: SELECT SAMPLE,
COLLECT DATA, SCREEN DATA, COMPUTE STATISTIC,

AND DETERMINE PROBABILITY ESTIMATES

Data are collected from a sample of participants during Step 5 of the hypothesis-
testing process. The data are assessed for data accuracy, missing values, and
univariate outliers, and to determine whether the underlying assumptions of the
statistic are met. If needed, data modifications are made. Then the null hypothesis
is tested using statistical analyses.

Sample Selection and Assignment

Thirty-five participants were randomly selected from a client population of a large
weight loss center in a metropolitan area in the United States. The average age of
the participants is 40 years old (SD ¼ 3.20). Each participant has a support
partner (friend) who is also participating in the behavioral weight control treat-
ment, and the friends’ average age is 41 (SD ¼ 5.23).

Study Data Diagnostics

Wewill next screen the sample data after it has been collected but before the primary
study hypothesis is tested. We are screening to: (1) check accuracy of data entries,
(2) identify and deal with missing data, (3) detect and make decisions about uni-
variate (one dependent variable) outliers, and (4) screen and make decisions about
univariate parametric assumptions. The underlying assumptions of a repeated-
measures ANOVA are that the dependent variable is assumed to be normally
distributed around zero within each treatment, and the group variances and cov-
ariances are assumed to be homogeneous across treatments, which is known as
sphericity. Sphericity refers to the variances being constant and the covariances being
constant within the covariance matrix, which is also known as compound symmetry.

Accuracy of Data Entry

The original data were compared to the entered data by members of the research
team. The data were determined to be accurate. The check of frequencies in the
descriptive statistics analysis showed that the variable scores were in expected
range and the means and standard deviations appeared plausible.
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Missing Data Analysis

There were no missing data in the original data set.

Means, Standard Deviations, Variances, and Assessing for
Univariate Outliers SPSS Commands

Enter the data found at the end of the chapter into IBM SPSS. Enter the data into
five columns just as it appears in the table. There is one ID column and there are
four data columns.

1. Click on Analyze . Descriptive Statistics . Descriptives . click over
Withsupport, Removesupport, Addsupport, and Continuesupport to Variable(s):.

2. Click on Options button and check Mean, Std. deviation, and Variance
and click on Continue.

3. Click on the box Save standardized values as variables and click OK.

4. Save the output as RM-ANOVA Descriptives.

The Descriptive Statistics Table 8.1 lists the sample size (N) of each group
followed by the lowest (minimum) and highest (maximum) scores in each group.
Valid N refers to the number of participant scores that do not having missing
data. The average scores (means) of weight loss by conditions are provided.
Measures of variability designate how the scores in each group distribution
deviate from their group mean. The standard deviation is an average measure of
score deviation from the mean, whereas the square of s is the variance (s2) or

TABLE 8.1 Descriptive Statistics of Weight Loss by Condition Group

Descriptive Statistics

N Minimum Maximum Mean Std. Deviation Variance

Withsupport 35 7.00 15.00 10.3143 2.24619 5.045

Removesupport 35 1.00 7.00 4.1143 1.67633 2.810

Addsupport 35 8.00 16.00 10.6000 1.63059 2.659

Continuesupport 35 7.00 14.00 10.2571 1.82052 3.314

Valid N (listwise) 35
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general spread of scores from the mean. Higher scores reflect more deviation of
scores from the mean for both s and s2. As you can see, there is a higher standard
deviation of scores from the mean for the Withsupport condition, and the stan-
dard deviations associated with the other conditions are closer together.

The standard values (z-scores) requested for the analysis to assess for uni-
variate outliers are produced in a new column for each condition on the Data
View spreadsheet and named ZWithsupport, ZRemovesupport, ZAddsupport, and
ZContinuesupport. These values represent the z-scores corresponding to the raw
scores in each condition. The highest positive and negative z-scores associated
with the raw scores of weight loss for each condition are reported in Table 8.2.
The z-scores are obtained by subtracting each condition’s raw scores from that
condition mean and dividing by its standard deviation (z ¼ [Xi 2 M]/SD).

One participant (ID #24) has a weight loss of 16 pounds at the condition
Addsupport that is a univariate outlier (z ¼ 3.312) using the criterion of 63.29
(,.001, two-tailed). No other weight loss scores are outliers in any of the four
condition groups.

The outlying raw score of 16 is higher than the other 34 participants at the
end of the Addsupport condition, with the condition group average weight loss
beingM ¼ 10.60 (SD ¼ 1.631). Looking at the other weight loss scores for #24
when the treatment included both the BWCT and support partners, the pounds
lost are Withsupport (15 lbs.) and Continuesupport (14 lbs.) (see Data View to
view these numbers for participant #24). The group outlying score of 16 for
Addsupport is not an uncharacteristic score for participant #24 when compared to
that individual’s other scores.

Case study information relative to participant #24 is analyzed to determine if
there are any personal characteristics, events during the study, or unique treat-
ment or measurement conditions that would explain the outlying weight

TABLE 8.2 Highest 6z-Scores by Condition Group

Condition
Highest

1z
Outlier?
. 63.29

Highest
2z

Outlier?
. 63.29

Withsupport 2.086* No 21.476 No

Removesupport 1.721 No 21.858 No

Addsupport 3.312 Yes 21.595 No

Continuesupport 2.056 No 21.789 No

* This number is rounded to three decimals.
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loss score at the nine-month weight measure for the Addsupport condition.
No explanations for the outlying score were identified. The decision is to keep the
outlying score and participant in the study since there is no reason to expect that
this individual is not representative of the population that we have sampled from.

Assessing for Underlying Assumptions

Initially, we will evaluate the dependent variable (weight loss) for normality by
assessing histograms, skewness, kurtosis, the Shapiro-Wilk statistic, and normal
Q-Q plots.

Normality SPSS Commands

1. Click on Data . Descriptive Statistics . Explore . click over With-
support, Removesupport, Addsupport, and Continuesupport to Dependent List.

2. Both should be clicked on under Display. In the upper right section, click
on the Plots button and click onHistogram and Normality plots with tests
and click Continue and OK.

3. Save the output as RM-ANOVA-assumptionscreen.

First, look at the histograms of the weight loss in the four conditions (see
Figures 8.6a, 8.6b, 8.6c, and 8.6d). Notice that they appear to approximate being
symmetrical. You will see the outlying score of 16 represented graphically by the
Addsupport histogram. It is difficult to confirm that a distribution is normal
enough for using a parametric statistic by viewing a histogram, so we will obtain
more definitive information.

Next, we will use the output information under Descriptives in the output
(see Table 8.3) to calculate skewness and kurtosis values.

We divide the skewness statistic value by its “Std. Error” value, and the
resulting value is a z-score that we compare to the criterion 63.29 (p , .001,
two-tailed test). The skewness and standard error and their resulting skewness
z-scores are presented in Table 8.4.

The distribution of raw scores on the dependent variable (weight loss) for each
condition group (Withsupport, Removesupport, Addsupport, and Continuesupport)
does not significantly depart from normality using our criterion, as is evident
when you compare the calculated skewness z-score values from Table 8.4 to the
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FIGURE 8.6A, B, C, AND D Histograms of Weight Loss by Weight Loss
Intervention
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FIGURE 8.6A, B, C, AND D (Continued)

Histogram

Addsupport
8.00 12.0010.00 14.00 16.00

Fr
eq

ue
nc

y 6

8

10

4

2

0

Mean � 10.60
Std. Dev. � 1.631
N � 35

(c)

Histogram

Continuesupport

Fr
eq

ue
nc

y

6

4

2

0

Mean � 10.26
Std. Dev. � 1.821
N � 35

8.00 10.00 12.00 14.00

(d)

c08 18 June 2012; 19:21:22

REPEATED-TREATMENT DESIGN USING A REPEATED-MEASURES ANALYSIS OF VARIANCE � 201



TABLE 8.3 Skewness, Kurtosis, and Standard Error Values by
Condition Group

Descriptives

Statistic Std. Error

Withsupport Mean 10.3143 .37968

95% Confidence

Interval for Mean

Lower Bound

Upper Bound

9.5427

11.0859

5% Trimmed Mean 10.2619

Median 11.0000

Variance 5.045

Std. Deviation 2.24619

Minimum 7.00

Maximum 15.00

Range 8.00

Interquartile Range 4.00

Skewness .160 .398

Kurtosis 2.919 .778

Removesupport Mean 4.1143 .28335

95% Confidence

Interval for Mean

Lower Bound

Upper Bound

3.5384

4.6901

5% Trimmed Mean 4.1270

Median 4.0000

Variance 2.810

Std. Deviation 1.67633

Minimum 1.00

Maximum 7.00

Range 6.00

Interquartile Range 2.00

Skewness 2.032 .398

Kurtosis 2.748 .778

Addsupport Mean 10.6000 .27562

95% Confidence

Interval for Mean

Lower Bound 10.0399

Upper Bound 11.1601

5% Trimmed Mean 10.5159

Median 10.0000

Variance 2.659

Std. Deviation 1.63059

Minimum 8.00

Maximum 16.00

Range 8.00

Interquartile Range 2.00
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criterion of63.29. The degree of skewness is the highest in the positive direction
of the Addsupport distribution (Z ¼ 2.291), which is the result of the univariate
outlier in the group. However, the outlier is not causing the group distribution to
depart from normality.

We follow the same procedures to assess kurtosis (see values in the output inTable
8.3), which is the clustering of scores in the center, the upper and lower ends (tails),
and the shoulders (between the center and the tails) of a distribution (Norusis, 1994).

None of the distribution kurtosis z-scores are considered problematic using
the 63.29 criterion (see Table 8.5). However, notice that the kurtosis of the

Skewness .912 .398

Kurtosis 2.231 .778

Continuesupport Mean 10.2571 .30772

95% Confidence

Interval for Mean

Lower Bound 9.6318

Upper Bound 10.8825

5% Trimmed Mean 10.2302

Median 10.0000

Variance 3.314

Std. Deviation 1.82052

Minimum 7.00

Maximum 14.00

Range 7.00

Interquartile Range 3.00

Skewness .183 .398

Kurtosis 2.531 .778

TABLE 8.4 Skewness z-Scores by Condition Group

Condition
Skewness z

(Stat./Std. Error 5 Z)
Skewness
Direction

Sig. Departure?
(. 63.29)

Withsupport .160/.398 ¼ .402 Positive No

Removesupport 2.032/.398 ¼ 2.080 Negative No

Addsupport .912/.398 ¼ 2.291 Positive No

Continuesupport .183/.398 ¼ .460 Positive No
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Addsupport condition group (z ¼ 2.868) also is affected by the univariate outlier
but not significantly departing from being a mesokurtic distribution.

The Shapiro-Wilk (S-W) statistic is assessed as another source of evidence to
use to determine whether the distributions of the group conditions are normally
distributed. The S-W statistic is found in the output under Tests of Normality
(see Table 8.6). The null hypothesis to test the S-W with an alpha of .01 is
presented next. We want to retain these hypotheses.

H0 : The Sample Distribution ¼ Normal

We fail to reject the null hypotheses ( p . .01) for all of the condition group
distributions since the significant probability levels (Sig.) of the Shapiro-Wilk
statistic are larger than α ¼ .01. We conclude that the four group distributions
are not deviating significantly from being normal as indicated by the S-W sta-
tistic. As you can see, the Sig. of .014 of the Addsupport group is close to our
criterion of α ¼ .01, but it is still above the criterion so we fail to reject the null
hypothesis that the sample distribution is normal. Again, the univariate outlier in

TABLE 8.5 Kurtosis z-Scores by Condition Group

Condition
Kurtosis z

(Stat./Std. Error 5 Z)
Kurtosis
Direction

Sig. Departure?
(. 63.29)

Withsupport 2.919/.778 ¼ 21.181 Platykurtic No

Removesupport 2.748/.778 ¼ 2.961 Platykurtic No

Addsupport 2.231/.778 ¼ 2.868 Leptokurtic No

Continuesupport 2.531/.778 ¼ 2.683 Platykurtic No

TABLE 8.6 Shapiro-Wilk Statistics by Condition Group

Tests of Normality

Kolmogorov-Smirnova Shapiro-Wilk

Statistic df Sig. Statistic df Sig.

Withsupport .134 35 .112 .947 35 .093

Removesupport .130 35 .143 .951 35 .125

Addsupport .158 35 .027 .919 35 .014

Continuesupport .128 35 .162 .958 35 .197

aLilliefors significance correction
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the Addsupport group is causing the S-W statistic to be close to reflecting
nonnormality.

The final evidence of normality that we will interpret is the normal Q-Q plot
for each distribution. A plot for each group is located in the output under the
heading Normal Q-Q Plot of Withsupport, Removesupport, Addsupport, and
Continuesupport (see Figures 8.7a, 8.7b, 8.7c, and 8.7d). An observed value in
the distribution is paired with its expected value from the normal distribution to
form the normal Q-Q plots. The number of cases in the sample and the rank
order of the case in the sample are used to generate the expected values for the
normal distribution. If the sample is from a normal distribution, we expect that
the points will fall more or less on a straight line.

The Q-Q plots reflect acceptable normality, with the vast majority of points
on the Q-Q plots in all condition group distributions falling on or near the
straight line, providing further evidence that each group is normally distributed
(see Figures 8.7a, 8.7b, 8.7c, and 8.7d). Again, you can see the univariate outlier
in the Addsupport Q-Q plot.

Summary of the Normality Evidence

There was one univariate outlier identified within the Addsupport distribution.
The effects of the univariate outlier were evident in all of the measures to assess
normality. This demonstrates how one case outlier can have a substantial effect
on the normal shape of a distribution. However, the skewness z-scores, kurtosis z-
scores, S-W statistics, and Q-Q plots were all in the acceptable range for us to
assume that the distributions were normal enough to conduct the RM-ANOVA.

Next, we assess the homogeneity of variances and covariances (sphericity)
assumption. We will need to run the actual RM-ANOVA analysis to get infor-
mation to assess this assumption.

Repeated-Measures Analysis of Variance of the Omnibus H0

RM-ANOVA SPSS Commands

1. Click Analyze . click General Linear Model . click Repeated Mea-
sures . in the box that says factor1, type in conditions and in the box beside
Number of Levels: type in the number 4 and click on the Add button and
then click on the Define button.
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FIGURE 8.7A, B, C, AND D Normal Q-Q Plots of Weight Loss by Weight
Loss Intervention Conditions
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FIGURE 8.7A, B, C, AND D (Continued)
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2. In a new window, click each of the four variables (Withsupport, Remove-
support, Addsupport, and Continuesupport) to the section titled Within-
Subjects Variables (factor 1):.

3. Click on the Plots button, then click over conditions to box under Hori-
zontal Axis:, then click on the Add button and the Continue button.

4. Click on the Options button, click over (OVERALL) and conditions under
the box title Display means for:, click on Compare main effects and select
LSD (none) under Confidence interval adjustment:, click on Descriptive
statistics, Estimates of effect size, and Observed power.

5. In the box next to Significance level:, type in .01 and click on the Continue
button and click on OK.

6. Save the output as RM-ANOVAResults.

Sphericity

The assumption of sphericity means that there is a constant pattern of variances
with each other and covariances with each other on the dependent variable weight
loss across the four conditions. Remember that variance is the mean of the sum of
the squared deviations from the mean score divided by the number of scores
(minus 1), S2 ¼ Σ(X 2 M)2/N 2 1. Covariance is conveys the extent that two
variables vary together, covXY ¼ Σ(X 2 Mx)(Y 2 My)/N 2 1.

Sphericity is similar to the assumption of homogeneity, but covariances are
added, resulting in variance-covariancematrices that are assessed. Since there are four
measures on the same dependent variable for each participant, the scores and means
are dependent (related) to each other, producing covariances that need to be con-
sistent with each other to accurately test the null hypothesis using RM-ANOVA.

We are using Mauchly’s test to assess whether the variance-covariance matrix
meets the assumption of sphericity by testing the following null hypothesis:

H0: The variances are constant with each other, and covariances are
constant with each other.

We want to retain the null hypothesis. If we reject the H0, then we will have
to make corrections to accurately interpret the F-test value produced from the
RM-ANOVA.
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On the output, refer to the table titled Mauchly’s Test of Sphericity (see
Table 8.7).

The significance level associated with Mauchly’s W test is p ¼ .112,
which is larger than our α ¼ .01. We retain the H0 that there is a constant
pattern of variances and covariances. We have met the sphericity assumption.
We will interpret the F-statistic results associated with the source Sphericity
Assumed.

If we had rejected the H0 that the variances and covariances are not constant,
then we could use the dft and dfe of the Greenhouse-Geisser or Huynh-Feldt to
obtain a critical value to evaluate the significance of F. The adjusted degrees of
freedom are obtained by taking the epsilons in the Mauchly table times the
degrees of freedom of the F-test in the tests of the Within-Subjects Effects Table.
The Greenhouse-Geisser is more conservative (especially with small samples) than
the Huynh-Feldt to correct for problems with sphericity.

Summary of Underlying Assumptions Findings

The assumption of normality of the four distributions of weight loss is met based
on the preponderance of evidence using several measures. The assumption of
sphericity is also met.

TABLE 8.7 Mauchly’s Test of Sphericity

Mauchly’s Test of Sphericitya

Measure: MEASURE_1

Within-
Subjects
Effect

Mauchly’s
W

Approx.
Chi-Square df Sig.

Epsilonb

Greenhouse-
Geisser

Huynh-
Feldt

Lower
Bound

Conditions .761 8.942 5 .112 .867 .945 .333

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed

dependent variables is proportional to an identity matrix.
a Design: Intercept within Subjects.
b May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected

tests are displayed in the Tests of Within-Subjects Effects table (Table 8.8).

Design: Conditions.
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PROGRESS REVIEW

1. The weight of participants was obtained at baseline. Then

data were collected on the dependent variable (weight loss)

in four three-month intervals over 12 months at the following

conditions: (1) with support partners in treatment, (2) remove

support partners in treatment, (3) add support partners in

treatment, and (4) continue support partners in treatment.

2. Problems with data accuracy and missing data were ruled out

in the early steps of the data-screening process.

3. The distributions of weight loss of the condition groups were

assessed for compliance in meeting the underlying assump-

tionsofusingtheRM-ANOVA.Oneparticipanthadaweight loss

score thatwas a univariate outlier. The decisionwas to keep the

outlying score and participant in the study since the participant

was found to be representative of the accessible population.

4. All other the measures of normality confirmed that the dis-

tributions met the underlying assumption of normality.

5. The underlying assumption of sphericity also was met.

6. The RM-ANOVA is conducted next.

RM-ANOVA Results

The following omnibus null hypothesis is tested next using the RM-ANOVA.

H0: μ1Withsupport ¼ μ1Removesupport ¼ μ1Addsupport ¼ μ1Continuesupport

Refer to the RM-ANOVA Results output reproduced in Table 8.8 as the
table called Tests of Within-Subjects Effects.

See conditions under the column titled Source. We used the term conditions to
reflect the independent variable in the study when we set up the data set. There are
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TABLE 8.8 RM-ANOVA Results for the Omnibus Null Hypothesis

Tests of Within-Subjects Effects

Measure: MEASURE_1

Source
Type III Sum
of Squares df

Mean
Square F Sig.

Partial Eta
Squared

Noncent.
Parameter

Observed
Powera

Conditions Sphericity assumed 1,036.364 3 345.455 110.325 .000 .764 330.976 1.000

Greenhouse-Geisser 1,036.364 2.600 398.651 110.325 .000 .764 286.811 1.000

Huynh-Feldt 1,036.364 2.834 365.689 110.325 .000 .764 312.663 1.000

Lower bound 1,036.364 1.000 1,036.364 110.325 .000 .764 110.325 1.000

Error

(conditions)

Sphericity assumed 319.386 102 3.131

Greenhouse-Geisser 319.386 88.389 3.613

Huynh-Feldt 319.386 96.356 3.315

Lower bound 319.386 34.000 9.394

aComputed using alpha = .01
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four rows under conditions, and we are going to use the row called “Sphericity
assumed” since we previously found that are datamet the underlying assumption of
sphericity.We see that the Sig. value is .000 and that is less than ourα ¼ .01, so we
can reject the null hypothesis,F(3, 102) ¼ 110.325, p , .01. There is a significant
difference in means of weight loss pounds across the condition groups: (1) with
support partners in treatment (M ¼ 10.314, SD ¼ 2.246), (2) remove support
partners in treatment (M ¼ 4.114, SD ¼ 1.676), (3) add support partners
in treatment (M ¼ 10.600, SD ¼ 1.631), and (4) continue support partners in
treatment (M ¼ 10.257, SD ¼ 1.821).

We found that there are mean differences in weight loss among the
four condition groups. Specifically, we will assess which pairs of means are
significantly different from each other.

Post Hoc Multiple Comparisons of Pairs of Means

We rejected the omnibus null hypothesis, concluding that there was a significant
difference in weight loss among the four condition groups. We also want to
find which pairs of means are significantly different from each other. The Fisher’s
protected least significant differences (PLSD) statistic is used to make pairwise
comparisons.

The results of comparing the pairs of means are in a table called Pairwise
Comparisons in the RM-ANOVA results output (reproduced in Table 8.9).

The first column in Table 8.9 shows the mean pairs of condition group com-
parisons being made where 1 ¼ with support partners in treatment (M ¼ 10.314),
2 ¼ remove support partners in treatment (M ¼ 4.114), 3 ¼ add support partners
in treatment (M ¼ 10.600), and 4 ¼ continue support partners in treatment
(M ¼ 10.257).

The first row is comparing 1 (with support partners in treatment) (M ¼ 10.314)
to 2 (remove support partners in treatment) (M ¼ 4.114). The Sig. value of the
differences between the two means is .000, which reflects a significant difference
( p , .01). The participants had significantlymoreweight loss with support partners
in treatment than when the support partners were removed.

A review of the other rows shows that the mean weight loss of condition
group 2 (remove support partners in treatment) (M ¼ 4.114) is significantly
lower than all of the other group means. And the other three groups are not
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significantly different from each other. We can conclude that when the support
partners are included in the treatment of persons with weight problems, a sig-
nificantly higher weight loss is experienced by the participants.

Trend Analysis

Trend analysis is another post hoc approach that is useful when the groups are defined
by the independent variable ordered along a continuum (Howell, 2010). Trend
analysis allows us to continue the analysis from the overall RM-ANOVA to an
analysis of the characteristics of the shapeof the relationshipbetween the independent
variable and the dependent variable. For example, one canmathematicallymodel the
form of the decline (or incline) of a dependent variable. Common shapes tested in

TABLE 8.9 Post Hoc Comparisons Using the Fisher’s Protected Least
Significant Differences (PLSD) Statistic

Pairwise Comparisons

Measure: MEASURE_1

(I)
Conditions

(J)
Conditions

Mean
Difference
(I 2 J)

Std.
Error Sig.a

99% Confidence Interval
for Differencea

Lower
Bound

Upper
Bound

1 2 6.200* .458 .000 4.950 7.450

3 2.286 .435 .516 21.472 .901

4 .057 .494 .909 21.289 1.404

2 1 26.200* .458 .000 27.450 24.950

3 26.486* .379 .000 27.519 25.452

4 26.143* .434 .000 27.327 24.958

3 1 .286 .435 .516 2.901 1.472

2 6.486* .379 .000 5.452 7.519

4 .343 .315 .284 2.516 1.202

4 1 2.057 .494 .909 21.404 1.289

2 6.143* .434 .000 4.958 7.327

3 2.343 .315 .284 21.202 .516

* Based on estimated marginal means.

* The mean difference is significant at the .01 level.
a Adjustment for multiple comparisons: least significant difference (equivalent to no

adjustments).
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trend analysis are linear trend (straight line), quadratic trend (variation of a U
or V shape), cubic trend (variation of an S shape), and quartic trend (similarities to
previous shapes but including another bend in the shape).

In this study, we expect that the condition of removing the support partners from
treatment for threemonths would decrease the weight loss of participants.When the
support partners are added to treatment, there would be an increase in weight loss.

Looking at the profile plot of means of weight loss by condition groups from
the RM-ANOVA results (see Figure 8.8), a V shape (quadratic trend) is evident.

This graphical trend can be assessed for significance from information pre-
sented in the Tests of Within-Subjects Contrasts table in the RM-ANOVA output
(see Table 8.10). The null we will be testing is H0: Quadratic trend ¼ 0. The
row Conditions—Quadratic shows a Sig. value of .000, which is less than
α ¼ .01 and therefore significant. There is a significant quadratic trend in the
means of weight loss across the condition groups, F(1, 34) ¼ 114.583, p , .01.
The effect size of practical significance is substantial, η2p ¼ :771.

FIGURE 8.8 Profile Plot of Means of Weight Loss by Condition Groups
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TABLE 8.10 Trends of Weight Loss Means Across the Condition Groups

Tests of Within-Subjects Contrasts

Measure: MEASURE_1

Source Conditions
Type III Sum
of Squares df

Mean
Square F Sig.

Partial
Eta-Squared

Noncent.
Parameter

Observed
Powera

Conditions Linear 69.773 1 69.773 15.682 .000 .316 15.682 .883

Quadratic 300.179 1 300.179 114.583 .000 .771 114.583 1.000

Cubic 666.413 1 666.413 286.676 .000 .894 286.676 1.000

Error

(conditions)

Linear 151.277 34 4.449

Quadratic 89.071 34 2.620

Cubic 79.037 34 2.325

a Computed using alpha = .01
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HYPOTHESIS TESTING STEP 6: MAKE DECISION
REGARDING THE H0 AND INTERPRET POST HOC EFFECT

SIZES AND CONFIDENCE INTERVALS

The results showed that there was an overall significant difference among the
weight loss means across the four conditions. The post hoc analyses showed
that when the partner support was removed, the resulting mean weight loss was
significantly lower from all of the other three conditions of Withsupport,
Addsupport, and Continuesupport. Moreover, we discovered a significant qua-
dratic trend in the condition means that showed the dramatic effect on weight
loss of removing the partner support (Removesupport). The magnitude of
treatment effect, post hoc power, and confidence intervals are presented next to
provide further clarification to the results.

Magnitude of Treatment Effect—Post Hoc Effect Size

Again refer to the Tests of Within-Subjects Effects table of the RM-ANOVA results
output (see Table 8.8). You see a partial eta-squared value (η2p ¼ :764) on the

“Conditions—Sphericity assumed” line next to the Sig. value. Eta-squared ranges
from 0 (small) to 1.0 (large).

We can interpret the η2p ¼ :764 by converting the fraction to a percentage by

moving the decimal two spaces to the right, and report that approximately 76.40
percent of the change in the dependent variable (weight loss) can be attributed to
the independent variable (weight loss intervention). There is clearly a substantial
magnitude of treatment effect of the weight loss program on weight loss.

Post Hoc Power

The actual power after the study was conducted is reported in the Tests of
Within-Subjects Effects table of the RM-ANOVA results output (see Table 8.8).
You see the observed power value (1.000) on the “Conditions—Sphericity
assumed” line at the end of the row. We had a 100 percent chance of correctly
rejecting a false null hypothesis in favor of the alternative hypothesis with a post
hoc effect size of .764, a sample size of 35, and an alpha of .01. This post hoc
power is consistently large as was the a priori power value of .901.
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Confidence Intervals of Mean Differences

The .99 CI for each means difference is provided in the output under Multiple
Comparisons Table (see Table 8.9). The interpretations of the mean
difference confidence intervals for the three paired-mean comparisons that are sig-
nificant (μ1Withsupport vs. μ2Removesupport), (μ3Addsupport vs. μ2Removesupport), and
(μ4Continuesupport vs. μ2Removesupport) are presented next. The .99 CI interval for the
means difference inweight loss comparing 1 (with support partners in treatment) to 2
(remove support partners in treatment) is (4.950)� (7.450). The probability is .99
that this intervalwill include the truemeansdifferencebetween the populationmeans
of weight loss between 1 (with support partners in treatment) and 2 (remove support
partners in treatment) and conditions for persons who are overweight. The .99
confidence interval for themeans difference in weight loss comparing 3 (add support
partners in treatment) to 2 (remove support partners in treatment) is (5.452) �
(7.519), and this interval will include the true means difference between the popu-
lation means of weight loss 99 times in 100. The CI.99 for the difference between 4
(continue support partners in treatment) and 2 (remove support partners in treat-
ment) is (4.958) � (7.327). The lower and upper limits of all of the intervals are
positive, which shows the high probability associated with having an increase in
weight loss when support partners are involved in treatment.

PROGRESS REVIEW

1. After concluding that the group distributionsmet the sphericity

assumption, theomnibusnull hypothesiswas rejected (p , .01),

indicating the existence of significant mean differences.

2. The overall magnitude of treatment effect of the independent

variable (weight loss intervention) on the dependent variable

(weight loss) was substantial, η2p ¼ :764.

3. The post hoc power value (observed power ¼ 1.0) showed

that we had a 100 percent chance of correctly rejecting

a false null hypothesis with a post hoc effect size of .764, a
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sample size of 35, and an alpha of .01. This post hoc power is

consistent with the a priori power value of .901.

4. The pairwise mean comparisons using the PLSD statistic

showed that when the support partners are included in the

treatment of persons with weight problems, a significantly

higher weight loss is experienced by the participants.

5. The .99 confidence intervals for the mean differences show

the high probability associated with having an increase in

weight loss when support partners are involved in treatment.

6. The trend analysis demonstrated a significant quadratic

trend, providing further evidence for the increase in weight

loss when support partners are included in behavioral

weight control treatment.

FORMULA CALCULATIONS OF THE STUDY RESULTS

The RM-ANOVA summary table specifications are found in Table 8.11. The
column and row means by subject and condition that we will be using in
the formula calculations are found in Table 8.12.

TABLE 8.11 RM-ANOVA Summary Table Specifications MST/MSE

Source of Variation df
Sum of Squares

(SS)
Mean Square

(MS) F

Within subjects (S) N 2 1 TΣðMS �MTOTÞ2 SSS/dfS —

Treatment (T) K 2 1 NΣðMT �MTOTÞ2 SST/dfT MST/MSE

Error (E) (K 2 1)(N 2 1) SSTOT 2 SST 2 SSS SSE/dfE —

Total (TOT) NTOT 2 1 NΣðMall �MTOTÞ2 — —

dfS ¼ N 2 1 is the within-subjects degrees of freedom where N is the number of subjects.

dfT ¼ K 2 1 is the treatment degrees of freedom where K is the number of treatments.

dfE ¼ (K 2 1)(N 2 1) is the error degrees of freedom: the number of treatments minus 1 times the

number of subjects minus 1.

dfTOT ¼ NTOT 2 1 is the total degrees of freedom based on N scores with one score unable to

vary. NTOT is calculated by [(K)(N) 2 1].
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TABLE 8.12 Study Data with Column and Row Means by
Subject and Condition

Subject
With

support
Remove
support

Add
support

Continue
support

Subject
Means

1 11 6 11 9 9.250

2 8 5 11 8 8.000

3 8 4 12 10 8.500

4 8 3 10 12 8.250

5 7 4 9 11 7.750

6 12 2 10 8 8.000

7 12 6 10 9 9.250

8 13 7 9 7 9.000

9 7 1 12 14 8.500

10 8 2 11 13 8.500

11 11 4 11 12 9.500

12 13 4 10 11 9.500

13 14 5 10 10 9.750

14 9 4 11 9 8.250

15 9 6 9 8 8.000

16 8 3 8 8 6.750

17 11 2 10 9 8.000

18 11 4 10 7 8.000

19 12 5 13 12 10.500

20 10 4 11 12 9.250

21 10 3 10 11 8.500

22 7 5 12 9 8.250

23 7 6 9 10 8.000

24 15 7 16 14 13.000

25 14 2 8 10 8.500

26 12 1 13 10 9.000

27 11 4 11 12 9.500

28 11 4 12 11 9.500

29 10 3 10 10 8.250

30 9 3 9 9 7.500

31 12 5 8 12 9.250

32 11 5 10 11 9.250

33 9 6 12 10 9.250

34 8 7 11 12 9.500

35 13 2 12 9 9.000

Treatment

means

10.314 4.114 10.600 10.257 8.821
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Calculation of Sums of Squares

The within, treatment, total, and error sum of squares are calculated with for-
mulas using the row means, column means, and grand mean (MTOT ¼ 8.821)
using the data from Table 8.12. The calculated results are then transferred to the
RM-ANOVA summary table, Table 8.13.

SSWithin ¼TΣðMS�MtotÞ2
¼4Σð9:250�8:821Þ2þ?þð9:000�8:821Þ2¼150:730

SSTreatment ¼NΣðMT�MtotÞ2
¼35Σð10:314�8:821Þ2þð4:114�8:821Þ2þð10:600�8:821Þ2
þð10:257�8:821Þ2

¼35Σð1:493Þ2þð�4:707Þ2þð1:779Þ2þð1:436Þ2
¼35Σ2:229þ22:156þ3:165þ2:062

¼35ð29:612Þ
¼1036:42

SSTotal ¼ NΣðMallscores �MtotÞ2
¼ Σð11� 8:821Þ2 þ ð8� 8:821Þ2 þ?þ ð12� 8:821Þ2

þ ð9� 8:821Þ2 ¼ 1506:536

SSError ¼ SSTotal � SSTreatment � SSSubjects
¼ 1506:536� 1036:42� 150:730

SSError ¼ 319:386

TABLE 8.13 RM-ANOVA Summary Table Specifications

Source of Variation df Sum of Squares (SS) Mean Square (MS) F

Within Subjects (S) 34 150.73

Treatment (T) 3 1,036.42 345.473 110.3

Error (E) 102 319.386 3.131 —

Total (TOT) 139 1,506.536 — —
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Figure 8.9 shows a visual representation of the findings. A critical value (CV)
is obtained using an online calculator.

Go to www.danielsoper.com . select Statistics Calculators . select
F-Distribution . select Critical F-value Calculator . type in 3 next
to Degrees of freedom 1: . type 102 next to Degrees of freedom
2: . type 0.01 beside Probability level: . click on Calculate!

The F critical value is 3.97960580, rounded to 3.98. We place the F critical
value on the abscissa (base of the curve) of the F-distribution curve. Then, we
place the obtained omnibus ANOVA value of F ¼ 110.3 on the curve. The area
of rejection begins on the abscissa at the CV, and any obtained F to the right of
the CV informs us to reject the null hypothesis. Our Fobtained ¼ 110.3 falls in the
area of rejection to the right of the CV ¼ 3.98, so we reject the H0, concluding
that if the null hypothesis is true we would have obtained results like these less
than 1 percent of the time. There is a difference in weight loss across the four
conditions at the .01 level of significance.

Post Hoc Effect Size—Partial Eta-Squared

The η2p is calculated next, resulting in η2p ¼ :764; this has a large strength effect

according to Cohen’s convention, where approximately 1 percent to 6 percent is
low,.6 percent to 14 percent is medium, and.14 percent is large. There clearly

FIGURE 8.9 Hypothesis Testing Graph RM-ANOVA

0

Area of Retention

Fcrit. � 3.98 Fobt. � 110.325

Area of Rejection

1 2 3 4 5 6 7 8 9 10 120. . . . . .
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is a very large magnitude of treatment effect of the weight-loss intervention
program on increasing weight loss.

η2p ¼
SSWithinSubjects

SSWithinSubjects þ SSError

¼ 1,036:42
1,036:42þ 319:386

¼ 1,036:42
1,355:806

η2p ¼ :764

Post Hoc Paired-Means Comparisons

Fisher’s Protected Least Significant Differences (PLSD)

Fisher’s protected least significant differences (PLSD) is a multiple comparison
procedure to assess for differences in pairs of means following a significant
omnibus F statistic. It is considered a liberal approach since more mean differ-
ences are found with this procedure than with most other procedures. The mean
square error term from the omnibus F analysis is used in the denominator of the
PLSD formula and helps protect against making a Type I error. In this problem
the MSe is 3.131, which can be found in Table 8.13.

We start by obtaining a t critical value to compare to obtained t-values using
an online calculator.

Go to www.danielsoper.com . click on Statistics Calculators . scroll down
and click on t-Distribution . click on Student t-Value Calculator .
type in 34 beside Degrees of freedom: . click 0.01 next to Probability
level: . click on Calculate! and the answer is t-value (two-tailed):
62.72839437.

The rounded value is tCV ¼ 62.728 using an α ¼ .01 with 34 df (Npairs

2 1, 35 2 1 ¼ 34). The obtained PLSD values for mean pairs are calculated
next, and the obtained t values are then compared to the tCV ¼ 62.728.
Obtained values greater than the tCV ¼ 62.728 reflect significant differences
( p , .01) between pairs of means.
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Withsupport Mean versus Removesupport Mean

tPLSD ¼ X 1 � X 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSe

1
n1

þ 1
n2

 !vuut

¼ 10:314� 4:114ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:131

1
35

þ 1
35

 !vuut

¼ 6:200ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:131ð:029þ :029Þp

¼ 6:200ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:131ð:058Þp

¼ 6:200ffiffiffiffiffiffiffiffiffi
:182

p

¼ 6:200
:427

tPLSD ¼ 14:520, p , :01

Withsupport Mean versus Addsupport Mean

tPLSD ¼ X 1 � X 3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSe

1
n1

þ 1
n2

 !vuut

¼ 10:314� 10:600ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:131

1
35

þ 1
35

 !vuut
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¼ �:286ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:131ð:029þ :029Þp

¼ �:286ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:131ð:058Þp

¼ �:286ffiffiffiffiffiffiffiffiffi
:182

p

¼ �:286
:427

tPLSD ¼ �:670, p . :01

Withsupport Mean versus Continuesupport Mean

tPLSD ¼ X 1 � X 4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSe

1
n1

þ 1
n2

 !vuut

¼ 10:314� 10:257ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:131

1
35

þ 1
35

 !vuut

¼ :057ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:131ð:029þ :029Þp

¼ :057ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:131ð:058Þp

¼ :057ffiffiffiffiffiffiffiffiffi
:182

p

¼ :057
:427

tPLSD ¼ :130, p . :01
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Removesupport Mean versus Addsupport Mean

tPLSD ¼ X 2 � X 3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSe

1
n1

þ 1
n2

 !vuut

¼ 4:114� 10:600ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:131

1
35

þ 1
35

 !vuut

¼ �6:486ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:131ð:029þ :029Þp

¼ �6:486ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:131ð:058Þp

¼ �6:486ffiffiffiffiffiffiffiffiffi
:182

p

¼ �6:486
:427

tPLSD ¼ �15:190, p , :01

Removesupport Mean versus Continuesupport Mean

tPLSD ¼ X 2 � X 4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSe

1
n1

þ 1
n2

 !vuut

¼ 4:114� 10:257ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:131

1
35

þ 1
35

 !vuut

¼ �6:143ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:131ð:029þ :029Þp
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¼ �6:143ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:131ð:058Þp

¼ �6:143ffiffiffiffiffiffiffiffiffi
:182

p

¼ �6:143
:427

tPLSD ¼ �14:386, p , :01

Addsupport Mean versus Continuesupport Mean

tPLSD ¼ X 3 � X 4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSe

1
n1

þ 1
n2

 !vuut

¼ 10:600� 10:257ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:131

1
35

þ 1
35

 !vuut

¼ :343ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:131ð:029þ :029Þp

¼ :343ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:131ð:058Þp

¼ :343ffiffiffiffiffiffiffiffiffi
:182

p

¼ :343
:427

tPLSD ¼ :803, p . :01

The three condition means of with support, add support, and continue
support are significantly different ( p , .01) from the remove support mean;
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however, the three condition means are not significantly different from each
other. These results are the same as we found from the PLSD pairwise com-
parisons in the SPSS results (Table 8.9).

Study Results

Thepurpose of this studywas to determine if support partners included in a behavioral
weight control treatment (BWCT) program for persons who are overweight would
increase theirweight loss. A repeated-treatment designwith a groupof participantswas
used in the study. After obtaining a baseline weight from participants, they received
three months of BWCT including support partners and their weight loss was mea-
sured. Then the BWCT continued, removing the support partners for three months,
and the participants’weight losswasmeasured again.The support partnerswere added
back to the BWCT for three months and the participants’ weight loss was measured.
Finally, the BWCT and support partners were continued for three more months and
weight loss measurements were made one last time.

The sample consisted of 35 participants who were randomly selected from a
client population of a large weight loss center in a metropolitan area in the
United States. The average age of the participants was 40 years old (SD ¼ 3.20).
Each participant has a support partner (friend) who was also participating in the
behavioral weight control treatment, and the friends’ average age was 41
(SD ¼ 5.23).

An a priori power analysis was conducted using α ¼ .01, N ¼ 35, a priori
effect size f ¼ .734, and average correlation of measures ¼ .55. The analysis
showed a power$.80, so we were confident that we would correctly reject a false
H0 in our study and avoid making a Type II error.

The data were screened prior to testing the null hypothesis. The accuracy of the
data set was checked and confirmed. The data set had no missing data. One parti-
cipant’s weight loss score was a univariate outlier (z ¼ 3.312 . 3.29) but was
determined to be representative of the target population. Additional measures were
used to assess the normality of the data set, including skewness and kurtosis z-scores,
Shapiro-Wilk statistics, and Q-Q plots. All normality measures reflected acceptable
normality. Sphericity was assessed, and the variance and covariances of weight loss
across the conditions were constant. The means and standard deviations of the
sample at each conditionwere: (1) with support partners in treatment (M ¼ 10.314,
SD ¼ 2.246), (2) remove support partners in treatment (M ¼ 4.114,
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SD ¼ 1.676), (3) add support partners in treatment (M ¼ 10.600, SD ¼ 1.631),
and (4) continue support partners in treatment (M ¼ 10.257, SD ¼ 1.821).

A significant difference in the four means was found using a RM-ANOVA,
F(3, 102) ¼ 110.325, p , .01. The magnitude of treatment effect was very
large, η2p ¼ :764. The PLSD statistic was used to assess the pairs of means for

significance. The mean of weight loss after removing support partners from
BWCT was significantly lower ( p , .01) than the means of all of the other
conditions that included support partners with BWCT. No other pairs were
significantly different among the three conditions that included support partners.

The CI.99 intervals for the mean difference of significant pairs were 1 (with
support partners in treatment) vs. 2 (remove support partners in treatment)
(4.950) � (7.450), 3 (add support partners in treatment) vs. 2 (remove support
partners in treatment) (5.452) � (7.519), 4 (continue support partners in
treatment) vs. 2 (remove support partners in treatment) (4.958) � (7.327). The
lower and upper limits of all of the intervals were positive, which shows the high
probability associated with having an increase in weight loss when support
partners are involved in treatment. A trend analysis resulted in a significant
quadratic trend ( p , .01) reinforcing an increase in weight loss when support
partners are included in behavioral weight control treatment.

In conclusion, the results of this study demonstrate that when support
partners are included in behavioral weight control treatment for persons who are
overweight, weight loss increases significantly when compared to BWCT without
the use of support partners.

SUMMARY

We used an RM-ANOVA within a repeated-treatment design applied to a research
problemwithin the context of the hypothesis-testing process. Research questions and
hypotheses were developed that incorporated independent and dependent variables.
We established a criterion alpha level considering Type I and II errors. An a priori
power analysis using G*Power was conducted to assess the fidelity of the study.

Data were entered for computer analyses using the IBM SPSS statistical
program (see Table 8.14). Data diagnostics were conducted to make sure that
data were accurate and that we met univariate underlying assumptions of nor-
mality, sphericity, and independence of scores. Interpretations were discussed of
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the omnibus RM-ANOVA results, pairwise mean comparisons, trend analysis,
effect size, post hoc power, and confidence intervals. Formula calculations were
conducted for the RM-ANOVA and pairwise mean comparisons. Finally, a
summary of the results was presented.

TABLE 8.14 Repeated-Measures Analysis of Variance Data

ID With support Remove support Add support Continue support

1 11 6 11 9

2 8 5 11 8

3 8 4 12 10

4 8 3 10 12

5 7 4 9 11

6 12 2 10 8

7 12 6 10 9

8 13 7 9 7

9 7 1 12 14

10 8 2 11 13

11 11 4 11 12

12 13 4 10 11

13 14 5 10 10

14 9 4 11 9

15 9 6 9 8

16 8 3 8 8

17 11 2 10 9

18 11 4 10 7

19 12 5 13 12

20 10 4 11 12

21 10 3 10 11

22 7 5 12 9

23 7 6 9 10

24 15 7 16 14

25 14 2 8 10

26 12 1 13 10

27 11 4 11 12

28 11 4 12 11

29 10 3 10 10

30 9 3 9 9

31 12 5 8 12

32 11 5 10 11

33 9 6 12 10

34 8 7 11 12

35 13 2 12 9
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PROBLEM ASSIGNMENT

Another RM-ANOVA problem with data set is found on the companion website.
Use the worksheet that is provided along with the steps used in this chapter to
complete the assignment.

KEY TERMS

average correlation

compound symmetry

covariances

cubic trend

Greenhouse-Geisser

Huynh-Feldt

linear trend

Mauchly’s Test of Spericity

mixed-subject ANOVA

statistical design

protected least significant

differences (PLSD)

quadratic trend

quartic trend

repeated-measures ANOVA

(RM-ANOVA)

repeated-treatment design

sphericity

Sphericity Assumed

Tests of Within-Subjects Effects

trend analysis

within-subjects design
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Chapter 9

RANDOMIZED FACTORIAL

EXPERIMENTAL DESIGN

USING A FACTORIAL ANOVA

LEARNING OBJECTIVES

� Demonstrate how to develop research questions and hypoth-
eses as they relate to a researchproblem incorporating the effects
of two independent variables on one dependent variable.

� Identify the components and application of a randomized
factorial experimental design.

� Examine prestudy considerations, conduct data diagnostics,
and execute a two-way analysis of variance (ANOVA) using
IBM SPSS and formulas.

� Perform post hoc analyses and understand the study findings
by combining the various analyses.
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A study example is presented assessing methods to retain cocaine abu-
sers in treatment. A partially randomized factorial design using a two-
way ANOVA is used to evaluate if a standard care plus contingency

management intervention can improve the treatment completion rate of cocaine
abusers. Also assessed is whether the number of prior treatment attempts has an
effect on treatment retention.

An a priori power analysis is conducted prior to the factorial ANOVA. Spe-
cifically, a 23 2 ANOVA is executed resulting in F-tests for two main effects, one
interaction, and simple effects. The results of the several analyses are presented.

RESEARCH PROBLEM

People with substance abuse disorders typically try several treatment attempts over
the life course of their disorders. In fact, Dennis, Scott, Funk, and Foss (2005)
reported that substance abusers attempt treatment three to four times over amedian
of nine years before reaching a minimum of one year of sustained abstinence. The
purpose of this study is to assess whether a behavioral intervention known as
contingency management (CM) can improve treatment retention compared across
prior treatment attempts by cocaine abusers. This simulated example approximates
findings of a study by Rash, Alessi, and Petry (2008).

A sample size of 125 participants was obtained. Two individuals met exclusion
criteria and three persons dropped out of the study before it began, resulting in a
study sample of 120 cocaine abusers who sought treatment. Fifty-four percent
(n¼ 65) of the participants were males, while females comprised 46 percent
(n¼ 55) of the sample. The average age of participants was 35, and on average they
had abused cocaine for over 10 years (M¼ 10.50 years, SD¼ 7.23).

STUDY VARIABLES

The independent and dependent variables are identified next. Additionally, the
operational definitions of the variables are described.

Independent Variables

Treatment condition is one independent variable (IVA), and treatment status is a
second independent variable (IVB). Independent variables are also referred to as
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factors, and we will be using both terms synonymously in our discussion.
Treatment retention is the dependent variable.

Treatment condition is operationally defined with two levels: (1) standard care
(SC) of substance abuse outpatient treatment and (2) standard care1 contingency
management (CM). The SC level for participants with cocaine use disorders
involved group therapy, psycho-education, skills-based instruction, 12-step treat-
ment, and screening of breath and urine samples over 12 weeks. The participants in
the SC1CM level condition received standard care as just described, with the
added benefit of being given a financial reinforcement for verified abstinence and
goal-related activity completion over the same time period. Participants’ abstinence
from cocaine during treatment was measured with 21 sets of breath and
urine samples over the 12 weeks. Each time the participants gave a clean breath
and urine sample they received a financial reinforcement. Moreover, each time the
participants completed a goal-related activity they receivedmoney as a reinforcement.
The scale of measurement of the IVA is discrete-nominal (categorical) since the con-
ditions are designed to be mutually exclusive from each other with no intended order.

Treatment status is the second independent variable (IVB) and is used in this
study to determine if the number of previous attempts by participants to treat
their cocaine disorder affects treatment retention. Treatment status in the study
example is operationally defined as (1) 0–1 prior treatment attempts and (2) $2
prior treatment attempts. The scale of measurement of the IVB also is discrete-
nominal (categorical).

Dependent Variable

The dependent variable (DV) is treatment retention, operationally defined as the
number of successful weeks in treatment. Since there are 12 weeks of treatment,
the possible range of scores for the dependent variable is 0–12 weeks. The DV is
continuously scaled (ratio) variable with equal distances between number points
and a true zero reference.

RESEARCH DESIGN

The research design used for this research example is a factorial design (Shadish,
Cook, & Campbell, 2002) to assess the effects of two independent variables,
treatment condition (XA) and treatment status (XB), on one dependent variable
(treatment retention).
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This is a 23 2 factorial design that is represented as a matrix in Table 9.1. It is
a partially randomized design in which participants were randomly assigned to the
standard condition and the standard condition1 contingency management
condition. However, the independent variable of Treatment Status is an attribute
IV since participants bring with them prior treatment attempts, resulting in being
classified as either 0–1 prior treatment attempts or $2 prior treatment attempts.

The two levels, SC (1) and SC1CM (2), of the independent variable XA
Treatment Condition are two rows in the matrix. The two levels, 0–1 Prior
Treatment Attempts (1) and $2 Prior Treatment Attempts (2), of the second
independent variable XB Treatment Status are columns in the matrix. This 23 2
factorial design creates four cells. In this study, we are using a between 23 2
randomized factorial design in which the cells are independent or orthogonal from
each other. There are different participants in each cell receiving a unique
combination of one level of each independent variable. For example, participants
in Cell XA1B1 will receive the SC treatment level condition and they will be
individuals who have had 0–1 prior treatment attempts. A different group of
participants who are in Cell XA2B2 will receive the SC1CM treatment level
condition and they will have $2 prior treatment attempts.

The 23 2 factorial design can be diagrammed as follows:

R XA1B1 O

R XA1B2 O

R XA2B1 O

R XA2B2 O

Each line in the diagram represents an independent group (four groups
[cells]), and the R symbolizes random assignment to each group condition. The
combination of one level of each independent variable represents the unique

TABLE 9.1 232 Factorial Design Matrix

XB Treatment Status

021 Prior treatment
attempts (1)

$2 Prior treatment
attempts (2)

XA Treatment SC (1) Cell XA1B1 Cell XA1B2

Condition SC1CM (2) Cell XA2B1 Cell XA2B2
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treatment condition and treatment status of the participants in each independent
group: (1) XA1B1 ([SC] and [0–1 prior treatment attempts]), (2) XA1B2 ([SC] and
[$2 prior treatment attempts]), (3) XA2B1 ([SC1CM] and [0–1 prior treatment
attempts]), and (4) XA2B2 ([SC1CM] and [$2 prior treatment attempts]). The
observation (O) is the post measure following 12 weeks of treatment imple-
mentation reflecting the number of weeks completed successfully in treatment,
which is the dependent variable, treatment retention.

Statistical Analysis: Factorial Analysis of Variance

A factorial ANOVA is used to test the effects of two (or more) independent variables
(main effects) on the same dependent variable and also examine how the independent
variables influence each other on the dependent variable (interaction effects). The
term factor is synonymous with independent variable, and a factorial ANOVA also is
referred to as a multifactor ANOVA, reflecting the fact that there is more than one
independent variable used in the statistical design. We can also use the descriptor
two-way ANOVA since there are two independent variables in this study.

In our example, a 23 2 ANOVA means that there are two independent
variables (factors) with two levels to each independent variable (factor). The
initial analyses test the null hypotheses associated with the effects of each inde-
pendent variable (factor) on the dependent variable (two main effects), and a
combination of effects on the dependent variable from certain levels of the first
independent variable (factor) with certain levels of the second independent var-
iable (factor) (one interaction effect). If the interaction effect is significant, we will
conduct a simple effects analysis to determine which levels of the first independent
variable with which levels of the second independent variable interact to produce
significant effects on the dependent variable.

Any ANOVA can be classified as being a between-subjects, within-subjects,
or mixed-subjects ANOVA design. A between-subjects ANOVA design compares
participant scores across groups that are not dependent on each other. A within-
subjects ANOVA design compares repeated-measured scores across participants. A
mixed-subjects ANOVA design combines both analyses between scores of inde-
pendent groups and within analyses of repeated measured scores of participants.
In this study, the 23 2 factorial ANOVA is a between-subjects ANOVA design.
We will be analyzing scores across independent groups, and there are no repeated
measurements on participants.
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Factorial ANOVA models can get more complex (higher orders) such as a
23 33 2 ANOVA, which means the analysis would involved three independent
variables, the first IV with two levels, the second IV with three levels, and a third
IV with two levels. We can visualize this analysis with a three-dimensional cube
(having 12 cells) where we are analyzing rows (first IV with levels), columns
(second IV with levels), and layers (third IV with levels) and then the interactions
between rows and columns, rows and layers, columns and layers, and rows,
columns, and layers. So, in the first analysis there would be seven null hypotheses
tested. Then the many possible post hoc and simple effects analyses would be
conducted.

The following underlying assumptions need to be met in order to use a
factorial ANOVA. Data screening will be conducted to assess whether the data set
meets these three assumptions:

1. Normality. The scores on the dependent variable for each condition are
normally distributed around their mean.

2. Homogeneity of variance. The variances of the scores of the dependent variable
across the conditions should be constant.

3. Independence of observations. The observations are independent from one
another and not correlated with each other.

PROGRESS REVIEW

1. The research problemwas presented that focuses on whether

a contingency management approach added to standard

care for cocaine abusers can increase their completion rate

in treatment. The independent variables are Treatment

Condition (SC vs. SC1CM) and Treatment Status (0–1 prior

treatment attempts vs.$2 prior treatment attempts), and their

effects on the dependent variable (Treatment Retention) will

be assessed.
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2. The 120 participants are randomly assigned to the four treat-

ment conditions using a 232 randomized factorial design.

3. The changes in the dependent variable, Treatment Retention,

are operationally defined as successful weeks in treatment

and will be assessed across the conditions using a two-way

analysis of variance statistic.

4. Next, the research questions are stated and we begin com-

pleting the steps of the hypothesis-testing process.

STATING THE OMNIBUS (COMPREHENSIVE)
RESEARCH QUESTIONS

The statistical results of a two-way ANOVA automatically generate three find-
ings, which are two main effects and one interaction effect. Additional statistical
findings can be created from these basic three analyses. We are going to start by
identifying the three omnibus research questions that relate the basic analysis of
the 23 2 ANOVA used in this problem. The steps of the hypothesis-testing
process related to this research problem will be presented following the statement
of the three research questions.

Omnibus Research Questions (RQs)

RQ1 (Main Effect of Treatment Condition): To what extent will the standard
care1 contingency management condition produce significantly higher treat-
ment retention (successful weeks in treatment) among participants when com-
pared to the standard care condition?

RQ2 (Main Effect of Treatment Status): To what extent will the $2 prior
treatment attempts level result in higher treatment retention (successful weeks in
treatment) among participants when compared to the 0–1 prior treatment
attempts level?

RQ3 (Interaction Effect of Treatment Condition & Treatment Status): To
what extent will there be significant mean differences in treatment retention
(successful weeks in treatment) across levels of treatment condition and treatment
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status? (Or it could be stated: To what extent will there be a significant inter-
action effect between treatment condition and treatment status on treatment
retention as measured by successful weeks in treatment?)

HYPOTHESIS TESTING STEP 1: ESTABLISH THE
ALTERNATIVE (RESEARCH) HYPOTHESIS (Ha)

The three omnibus alternative hypotheses for our research problem are stated
next in both narrative and symbolic formats. We also will be addressing sub-
questions and subhypotheses following the overall analysis.

Omnibus Narrative Alternative Hypotheses (Ha)

Ha1 (Main Effect of Treatment Condition): The standard care1
contingency management condition will produce significantly higher
treatment retention (successful weeks in treatment) among participants
when compared to the standard care condition without the contingency
management (CM) condition.

Ha2 (Main Effect of Treatment Status): The $2 prior treatment
attempts level will result in higher treatment retention (successful weeks
in treatment) among participants when compared to the 0–1 prior
treatment attempts level.

Ha3 (Interaction Effect of Treatment Condition & Treatment Status):
There will be significant mean differences in treatment retention (suc-
cessful weeks in treatment) across levels of treatment condition and
treatment status.

Symbolic Alternative Hypotheses (Ha)

Ha1 : ðMain Effect of Treatment ConditionÞ: μ1 , μ2

where μ1¼ population mean of treatment retention (successful weeks in
treatment) of participants in the SC level of the treatment condition
being estimated by the sample mean
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μ2¼ population mean of treatment retention (successful weeks in
treatment) of participants in the SC1CM level of the treatment con-
dition being estimated by the sample mean

Ha2: ðMain Effect of Treatment StatusÞ: μ1 , μ2

where μ1¼ population mean of treatment retention (successful weeks in
treatment) of participants in the 0–1 prior treatment attempts level of
the treatment status being estimated by the sample mean

μ2¼ population mean of treatment retention (successful weeks in
treatment) of participants in the $2 prior treatment attempts level of
the treatment status being estimated by the sample mean

Ha3: ðInteraction Effect of Treatment Condition&Treatment StatusÞ
: μ13 μ2.0

where μ1¼ population means of treatment retention (successful weeks in
treatment) of participants in both levels of the treatment condition (SC
and SC1CM) estimated by the sample means

μ2¼ population means of treatment retention (successful weeks in treat-
ment) of participants in both levels of treatment status (0–1 prior attempts
and$2 prior treatment attempts) estimated by the sample means

The alternative hypotheses for the main effects are directional. The SC1CM
level of treatment condition is expected to produce better treatment retention (suc-
cessful weeks in treatment) when compared to the SC level. The$2 prior treatment
attempts level of treatment status is expected to generate higher treatment retention
when compared to 0–1 prior treatment attempts. The interaction alternative
hypothesis is stated in a nondirectional format. The specific differences in treatment
retention across levels of treatment condition and treatment status are not specified.

Jones and Tukey (2000) Recommended Process to Reach
Conclusions

We have three possible decisions that can be made for each of the three
hypotheses following the recommendations by Jones and Tukey (2000). For the
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first two main effects, there are three possible conclusions for each main effect:
(1) the mean number of treatment completed weeks resulting from the SC (μ1)
condition is higher than for the SC1CM condition (μ2), (2) the mean number
of treatment completed weeks resulting from the SC (μ1) condition is lower than
for the SC1CM condition (μ2), or (3) the conclusions are indefinite. The two
possible conclusions for the interaction effect are that there is an interaction effect
or that the presence of an interaction effect is indefinite.

(Main Effect of Treatment Condition). Act as if:

1. (μ12 μ2). 0, (2) (μ12 μ2), 0, or (3) the sign (,0 or .0) of (μ12 μ2) is
indefinite.

(Main Effect of Treatment Status). Act as if:

2. (μ12 μ2). 0, (2) (μ12 μ2), 0, or (3) the sign (,0 or .0) of (μ12 μ2) is
indefinite.

(Interaction Effect of Treatment Condition & Treatment Status). Act as if:

3. (μ13 μ2). 0 or (2) the sign (.0) of (μ13 μ2) is indefinite.

HYPOTHESIS TESTING STEP 2: ESTABLISH THE NULL
HYPOTHESIS (H0)

The omnibus null hypotheses are stated in narrative and symbolic formats in the
second step of the hypothesis-testing process.

Omnibus Narrative Null Hypotheses (H0)

H01 (Main Effect of Treatment Condition): There will be no significant mean
difference in treatment retention (successful weeks in treatment) when comparing
the effects of the standard care (SC) condition to the standard care1 contingency
management (CM) condition.

H02 (Main Effect of Treatment Status): There will be no significant mean
difference in treatment retention (successful weeks in treatment) when comparing
the effects of 0–1 prior treatment attempts to $2 prior treatment attempts.
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H03 (Interaction Effect of Treatment Condition & Treatment Status): There
will be no significant mean differences in treatment retention (successful weeks in
treatment) across levels of treatment condition and treatment status.

Symbolic Null Hypotheses (H0)

H01: (Main Effect of Treatment Condition): μ1¼ μ2

H02: (Main Effect of Treatment Status): μ1¼ μ2

H03: (Interaction Effect of Treatment Condition & Treatment Status):
μ13 μ2¼ 0

HYPOTHESIS TESTING STEP 3: DECIDE ON A RISK LEVEL
(ALPHA) OF REJECTING THE TRUE H0 CONSIDERING

TYPE I AND II ERRORS AND POWER

We will choose an alpha criterion (α) that we will use to make a decision about
whether to reject a true null hypothesis (H0) in this step of the hypothesis-testing
process. During this step of the hypothesis-testing process, we choose an alpha
criterion (α) that we will use to make a decision about whether to reject a true
null hypothesis (H0). We consider the balancing act between Type I (alpha) and
Type II (beta) errors. Then, we will use our chosen α level and combine it with
anticipated sample size and an estimated (a priori) effect size and determine if we
have enough power (a priori) to conduct the study. Power is the probability of
correctly rejecting a false null hypothesis.

Selecting Alpha (α) Considering Type I and Type II Errors

As is customary, we will choose an α level of either .001, .01, .05, or .10. Several
previous studies have shown that adding contingency management to standard
care practices is effective in keeping cocaine abusers in treatment. Moreover,
previous research has shown that persons with $2 prior treatment attempts have
higher treatment retention than individuals with 0–1 prior attempts. This study
has a goal to replicate findings from past studies. Therefore, a stricter alpha cri-
terion of α¼ .01 will be used in this study. This increases the probability of not
making a Type I error, which is rejecting a true null. This will provide more
confidence in our decision if the SC1CM condition and $2 prior treatment
attempts level produces significantly higher treatment retention when compared
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to the SC condition and 0–1 prior attempts level (reject H0). However, if we
don’t reject the null that there are differences, the α¼ .01 increases the proba-
bility of making a Type II error of failing to reject H0 when there are significant
differences in means (false H0).

A Priori Power Analysis

Next, we will conduct an a priori power analysis to determine the probability of
correctly rejecting the false null hypotheses in our study. We have a sample size
(N¼ 120) and alpha (α¼ .01) but need estimated effect sizes for the two main
effects and the interaction effect to conduct the power analysis. One might use
different power analysis criteria for various effects. For example, previous litera-
ture may show that the estimated effect size of one main effect is lower than the
other main effect. In that case, we would use different estimated effect sizes when
conducting the power analyses for each main effect.

We are going to use the following a priori effect sizes based on average eta-
squared effect sizes from several related studies: (1) Treatment Condition,
η2¼ .24; (2) Treatment Status, η2¼ .19; (3) Treatment Condition3Treatment
Status Interaction, η2¼ .22. We are going to use G*Power 3.2.1 to compute the
power analyses.

Power Analysis Using G*Power 3.1

We also will conduct the power analysis using G*Power 3.1.2 for the two main
effects and the interaction effect. Theα¼ .01, desired power of .80, and an estimated
effect sizes of Treatment Condition (η2¼ .24), Treatment Status (η2¼ .19), and
Treatment Condition X Treatment Status Interaction, η2¼ .22 are used.

Treatment Condition

1. Open up the G*Power 3.1.2 program.

2. Select F tests under Test family. under Statistical test, select ANOVA:
Fixed effects, special, main effects and interactions. under Type of
power analysis, select A priori: Compute required sample size - given α,
power, and effect size.

3. To the left of Effect size f, click on the Determine button and a new
attached window opens up that requests additional information. Click on the
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Direct circle and beside partial η2 type in the first η2¼ .24 (Treatment
Condition) and click on the Calculate and transfer to the main window
button and click on the Close button.

4. You will notice that next to Effect size f is the number 0.5619515. Next,
beside α err prob type 0.01. beside Power (1-β err prob), type 0.80.
beside Numerator df, type 1. beside Number of groups, type 2. click on
Calculate button.

The analysis for Treatment Condition produced a required total sample size
of 41 participants to reach a power of .8073356 using an α¼ .01 and an esti-
mated effect size of η2¼ .24. (See Figure 9.1.) Our study sample size of N¼ 120
exceeds the requirement.

Treatment Status Follow the same procedures to conduct the power analysis for
Treatment Status now using an η2¼ .19. (See Figure 9.2.) Click on theDirect circle
and beside partial η2 type in the η2¼ .19 (Treatment Status) and click on the
Calculate and transfer to the main window button and click on theClose button.
This produces in the main window an effect size f¼ 0.4843221. Next, besideα err
prob type 0.01. beside Power (1-β err prob), type 0.80. besideNumerator df,
type 1. beside Number of groups, type 2. click on Calculate button.

The analysis for Treatment Status produced a required total sample size of 54
participants to reach a power of .8075639 using an α¼ .01 and an estimated effect
size of η2¼ .19. Our study sample size of N¼ 120 exceeds the requirement.

Treatment Condition3Treatment Status Interaction Follow the same
procedures to conduct the power analysis for Treatment Condition3Treatment
Status Interaction nowusing now anη2¼ .22. (See Figure 9.3.)Click on theDirect
circle and beside partial η2 type in the η2¼ .22 (Treatment Condition3
Treatment Status) and click on the Calculate and transfer to the main window
button and click on theClose button. This produces in the main window an effect
size f ¼ 0.5310850. Next, beside α err prob type 0.01. beside Power (1-β err
prob), type 0.80. beside Numerator df, type 1. beside Number of groups,
type 4 (there are four groups or cells being compared). click onCalculate button.

The analysis for Treatment Status produced a required total sample size of 46
participants to reach a power of .8113268 using an α¼ .01 and an estimated effect
size of η2¼ .22. Our study sample size of N¼ 120 exceeds the requirement.

c09 19 June 2012; 12:37:3

RANDOMIZED FACTORIAL EXPERIMENTAL DESIGN USING A FACTORIAL ANOVA � 243



FIGURE 9.1 Power Analysis for Treatment Condition of the Factorial
ANOVA Problem
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FIGURE 9.2 Power Analysis for Treatment Status of the Factorial ANOVA
Problem
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FIGURE 9.3 Power Analysis for Treatment Condition 3 Treatment Status
Interaction of the Factorial ANOVA Problem
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PROGRESS REVIEW

1. We stated the research questions for the study problem.

2. We completed the first two steps of the hypothesis-testing

process by stating the alternative and null hypotheses in

narrative and symbolic formats.

3. Next, we decided on the risk we are willing to take when

rejecting a true null hypothesis by choosing alpha (α). We

chose α¼ .01, which we believed was a reasonable criterion in

our study to avoid making a Type I or Type II error.

4. We conducted a power analysis to make sure that our

probability of correctly rejecting a false null hypothesis was

adequate (power¼ .80) before moving ahead with the study.

Using G*Power 3.1.2, we found that we met the a priori power

expectation of .80.

HYPOTHESIS TESTING STEP 4: CHOOSE APPROPRIATE
STATISTIC AND ITS SAMPLING DISTRIBUTION TO TEST

THE H0 ASSUMING H0 IS TRUE

We are using a two-way ANOVA to test the three null hypotheses in this study.
We are going to compare the means of Treatment Retention (DV) for each main
effect of Treatment Condition (IV1) and Treatment Status (IV2) and their
interaction effect for significant differences using the F distribution. The two-
way ANOVA is appropriate to use because: (1) there are two independent
variables, (2) there are different participants in each of the four groups,
(3) there is one dependent variable, and (4) the dependent variable is contin-
uously scaled.
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HYPOTHESIS TESTING STEP 5: SELECT SAMPLE, COLLECT
DATA, SCREEN DATA, COMPUTE STATISTIC, AND

DETERMINE PROBABILITY ESTIMATES

In Step 5 of the hypothesis-testing process, data are collected from a sample of
participants. The data are assessed for data accuracy, missing values, and uni-
variate outliers, and to determine if the underlying assumptions of the statistic are
met. Data modifications are made if warranted by the data screening results.
Then the null hypotheses are tested using the two-way ANOVA.

Sample Selection and Assignment

The sample of this study consisted of cocaine abusers seeking treatment in a
substance use disorder clinic. Participants were included in the study if they were
18 years of age or older and had abused cocaine within the past year or longer.
Also, they had to meet the Diagnostic and Statistical Manual of Mental Disorders
criteria for dependency.

Potential participants were excluded if they had a psychosis diagnosis, suicidal
ideation, or chronic gambling history. They also were excluded if they were
unable to comprehend and follow the study procedures.

The independent variable of Treatment Status is an attribute IV where the
participants either have 0–1 prior treatment attempts or equal to or greater than two
($2) prior treatment attempts. Therefore, it was necessary to select a sample with
an equal number of participants in the two categories of prior treatment attempts.
The initial sample was 125 individuals; however, two individuals met exclusion
criteria and three persons dropped out of the study before it began. The final study
sample was 120 cocaine abusers who sought treatment. The participants encompass
characteristics that reflect the persons, settings, times, independent variables, and
dependent variables we intend to use to generalize our findings.

The 120 participants were assigned randomly to four groups as follows:
(1) XA1B1 ([SC] and [0–1 prior treatment attempts]), (2) XA1B2 ([SC] and [$2
prior treatment attempts]), (3) XA2B1 ([SC1CM] and [0–1 prior treatment
attempts]), and (4) XA2B2 ([SC1CM] and [$2 prior treatment attempts]).
Whether a participant had either 0–1 prior treatment attempts or $2 prior
treatment attempts was an attribute that participants brought with them to the
study, so random assignment could not be used across the two conditions.
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However, random assignment was used to group participants by Treatment
Status into the two groups used for each condition.

Study Data Diagnostics

We are next going to conduct data diagnostics to assess for accuracy of data
entries, missing data, univariate outliers, and compliance to the underlying
assumptions of the two-way ANOVA. This is done after the data are collected
and before the null hypotheses are tested.

Accuracy of Data Entry

The individual scores on the dependent variable were in expected range and the
means and standard deviations were credible when compared to descriptive sta-
tistics from previous studies. All of the original data were compared and cor-
roborated to the entered data by two members of the research team.

Missing Data Analysis

There were no missing data in the original data set.

Means, StandardDeviations,Variances, andAssessing forUnivariateOutliers
IBM SPSS Commands

Enter the data from the Two-Way Analysis of Variance Data table at the end of
the chapter into IBM SPSS. Enter the participant ID numbers and three columns
of data just as they appear in the table.

1. Click on Data. Split File. click on circles beside Compare groups and
Sort the file by grouping variables. click on TreatmentStatus and Treat-
mentCondition and click the arrow so that TreatmentStatus and Treatment-
Condition are under Groups Based on. click on OK and don’t save
command output. You have instructed the program to generate output by
the four groups (TreatmentStatus3TreatmentCondition). You will need to
change back this split file command later.
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2. Click on Analyze.Descriptive Statistics.Descriptives. click over
TreatmentRetention to Variable(s). click on Save standardized values as
variables. click on Options and check Mean, Std. deviation, and Vari-
ance. click on OK. save the output as TwowayANOVA Descriptives.

The Descriptive Statistics Table 9.2 lists the sample size of each group followed
by the lowest (minimum) and highest (maximum) scores in each group. Valid N
refers to the number of participant scores that do not having missing data. The
average scores (means) by groups on the Treatment Retention (number of treatment
weeks successfully completed) are provided. Measures of variability designate the
extent that the scores in each group distribution deviate from their groupmean.The
standard deviation is an average measure of score deviation from the mean, whereas
the square of s is the variance (s2) or general spread of scores from the mean. Higher
scores reflect more deviation of scores from the mean for both s and s2. As you can
see, the standard deviations and variances do not deviate highly from one another,
which suggests we may have homogeneity of variance.

The standard values (z-scores) requested for the analysis to assess for univariate
outliers are produced in a new columnon theDataView IBMSPSS spreadsheet and
named ZTreatmentRetention. These values represent the z-scores corresponding to
the raw scores in each group. Since we used the “Split File” command, the z-scores
for participant scores are produced separately for each of the four groups. The first
group, ([SC] and [0–1 prior treatment attempts]), is represented by ID #s 1–30,
group 2 ([SC] and [$2 prior treatment attempts])¼ ID #s 31–60, group 3
([SC1CM] and [0–1 prior treatment attempts])¼ ID #s 61–90, and group 4
([SC1CM] and [$ 2 prior treatment attempts])¼ ID #s 91–120. The highest
positive and negative z-scores for each group are reported in Table 9.3.

None of the z-scores exceed the criterion of63.29 (,.001, two-tailed), so we
conclude that the raw scores of each group are not far removed from the rest of
the scores in each group.

At this point, remove the Split File filter. Data. Split File. click on the
Reset button and then click OK; click out of the output and don’t save it.

Assessing for Underlying Assumptions

Initially, we will assess the dependent variable (treatment retention) by each
group for normality by assessing histograms, skewness, kurtosis, the Shapiro-Wilk
statistic, and normal Q-Q plots.
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TABLE 9.2 Descriptive Statistics of Treatment Retention by Treatment Condition 3 Treatment Status Groups

TreatmentCondition TreatmentStatus N Minimum Maximum Mean
Std.

Deviation Variance

Standard Care 021 Prior treatment
attempts

TreatmentRetention 30 3.00 9.00 5.5667 1.50134 2.254
Valid N (listwise) 30

$2 Prior treatment
attempts

TreatmentRetention 30 2.00 7.00 4.8000 1.42393 2.028
Valid N (listwise) 30

Standard Care 1

Contingency
Management

021 Prior treatment
attempts

TreatmentRetention 30 2.00 8.00 5.7000 1.57896 2.493
Valid N (listwise) 30

$2 Prior
treatment
attempts

TreatmentRetention 30 5.00 11.00 7.5333 1.35782 1.844
Valid N (listwise) 30
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Normality IBM SPSS Commands

1. Analyze.Descriptive Statistics.Explore.

2. Click over dependent variable TreatmentRetention to Dependent List.

3. Click over independent variables (TreatmentCondition & TreatmentStatus)
to Factor List. Remember factor is another term for independent variable.

4. Do not change Display choices—leave on Both.

5. To the upper right of Display are three buttons. Click on Plots. Then,
select Histograms, Normality plots with tests.

6. Under Spread vs. Level with Levene Test click on Untransformed. (If we
wanted a .99 CI of the Mean, we would change at Statistics button.)

7. Click on Continue.

8. Click on OK.

9. Save the output as TwowayANOVAassumptionscreen.

First, look at the information under Descriptives on the output (see Table 9.4).
There are two SPSS tables of descriptives. The first table shows means of the
dependent variable (Treatment Retention) based on Treatment Condition and is
followed by several other statistical tables of information that we will use. The second
table of descriptives based on Treatment Status is in the second half of the SPSS
output followed by several tables. Please note that these four means are row and
column means that combined cell means of each of the two rows and two columns.
The fourmeans in Table 9.4 are the cell means that are used to compute the row and

TABLE 9.3 Highest 6z-Scores by Group

Conditions
Group

Highest
1z

Outlier?
.63.29

Highest
2z

Outlier?
.63.29

SC/0–1 2.287* No 21.710 No
SC/$2 1.545 No 21.966 No
SC 1 CM/0–1 1.457 No 22.343 No
SC 1 CM/ 2 2.553 No 21.866 No

*These numbers are rounded to three decimals.
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TABLE 9.4 Skewness, Kurtosis, and Standard Error Values by Group

Descriptives

TreatmentCondition Statistic Std. Error

TreatmentRetention Standard Care Mean 5.1833 .19382
95% Confidence
Interval for Mean

Lower Bound 4.7955
Upper Bound 5.5712

5% Trimmed Mean 5.1667
Median 5.0000
Variance 2.254
Std. Deviation 1.50132
Minimum 2.00
Maximum 9.00
Range 7.00
Interquartile Range 2.00
Skewness .049 .309
Kurtosis 2.215 .608

Standard Care
1Contingency Management

Mean 6.6167 .22309

95% Confidence
Interval for Mean

Lower Bound 6.1703
Upper Bound 7.0631

5% Trimmed Mean 6.6481
Median 7.0000
Variance 2.986
Std. Deviation 1.72805
Minimum 2.00
Maximum 11.00
Range 9.00
Interquartile Range 2.75
Skewness 2.255 .309
Kurtosis .371 .608

(Continued)
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TABLE 9.4 Skewness, Kurtosis, and Standard Error Values by Group (Continued)

Descriptives

TreatmentStatus Statistic Std. Error

TreatmentRetention 0–1 Prior treatment attempts Mean 5.6333 .19739
95% Confidence
Interval for Mean

Lower Bound 5.2383
Upper Bound 6.0283

5% Trimmed Mean 5.6481
Median 6.0000
Variance 2.338
Std. Deviation 1.52900
Minimum 2.00
Maximum 9.00
Range 7.00
Interquartile Range 2.00
Skewness 2.144 .309
Kurtosis 2.348 .608

$2 Prior treatment attempts Mean 6.1667 .25174
95% Confidence
Interval for Mean

Lower Bound 5.6629
Upper Bound 6.6704

5% Trimmed Mean 6.1667
Median 6.0000
Variance 3.802
Std. Deviation 1.94994
Minimum 2.00
Maximum 11.00
Range 9.00
Interquartile Range 2.75
Skewness 2.029 .309
Kurtosis 2.271 .608
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columnmeans. Later,wewill combine the cell, row, and columnmeans into one table
to clarify the interpretation of the two-way ANOVA.

Skewness

Look at the values for skewness and “Std. Error” for each group in Table 9.4.
Divide the skewness statistic value by its Std. Error value to obtain z-scores. The
skewness and standard error and their resulting skewness z-scores are presented in
Table 9.5.

There are no extreme scores relative to most of the scores in the distributions
in the positive (right) end or negative (left) end of the distributions. The skewness
z-scores are not even close to the criterion of 63.29 (p, .001, two-tailed test).

Below the skewness and standard error values in Table 9.4 are the “Kurtosis”
and “Std. Error” values. We will divide the kurtosis statistic by its standard error
and compare the resultant z-score to 63.29 to see if any group distribution
significantly departs from normality (see Table 9.6).

None of the four condition group distributions have kurtosis z-scores that are
greater than 63.29, so they do not depart significantly form normality.

TABLE 9.5 Skewness z-Scores by Condition Group

Condition
Skewness z

(Stat./Std. Error5Z)
Skewness
Direction

Sig. Departure?
(. 63.29)

SC .049/.309¼ .159 Positive No
SC1CM 2.255/.309¼2.825 Negative No
0–1 Prior visits 2.144/.309¼2.466 Negative No
$2 Prior visits 2.029/.309¼2094 Negative No

TABLE 9.6 Kurtosis z-Scores by Condition Group

Condition
Kurtosis z

(Stat./Std. Error5Z)
Kurtosis
Direction

Sig. Departure?
(. 63.29)

SC 2.215/.608¼2.354 Platykurtic No
SC1CM .371/.608¼ .610 Leptokurtic No
0–1 Prior visits 2.348/.608¼2.572 Platykurtic No
$2 Prior visits 2.271/.608¼2.446 Platykurtic No
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Shapiro-Wilk (S-W) Statistic

The S-W statistic provides corroborating evidence to use to determine if the
distribution of the group conditions are normally distributed. The S-W statistics
are found in the output under Tests of Normality (see Table 9.7). The null
hypothesis that we are testing (α¼ .01) for each group with the S-W is:

H0: The Sample Distribution ¼ Normal

We want to retain the null hypothesis, which says that the sample distribu-
tion that we are testing is not deviating significantly from being normally
distributed.

The significant probability levels (Sig.) of the Shapiro-Wilk statistic are .051
(SC), .075 (SC1CM), .042 (0–1 prior attempts), and .208 ($2 prior attempts);
all of these levels are greater than α¼ .01. Our rule is to reject a null hypothesis if
the probability level of the calculated statistic is less than our stated alpha level,
and we fail to reject the null if our significance probability is greater than our
alpha. Therefore, we conclude that these four group distributions are not devi-
ating significantly from being normally distributed.

Normal Q-Q Plots

The final evidence of normality that we will interpret is the normal Q-Q
plot for each distribution. A plot for each group is located in the output under
the heading Normal Q-Q Plots. If the sample is from a normal distribution, we
expect that the points will fall more or less on a straight line, reflecting con-
gruence between observed values in the distribution paired with their expected
values from the normal distribution (see Figures 9.4a, 9.4b, 9.4c, and 9.4d).

The points fall on or near the straight line of the Q-Q plots for all four
groups, adding to the evidence that each group is normally distributed.

Summary of the Normality Evidence

No individual Treatment Retention scores were univariate outliers within the
four groups represented by combinations of the two levels of the two
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TABLE 9.7 Shapiro-Wilk Statistics by Condition Group

Tests of Normality

Kolmogorov-Smirnova Shapiro-Wilk

TreatmentCondition Statistic df Sig. Statistic df Sig.

TreatmentRetention Standard Care .140 60 .005 .961 60 .051
Standard Care 1

Contingency Management
.154 60 .001 .964 60 .075

Tests of Normality

Kolmogorov-Smirnovb Shapiro-Wilk

TreatmentStatus Statistic df Sig. Statistic df Sig.

TreatmentRetention 0–1 Prior treatment attempts .145 60 .003 .959 60 .042
¼ $2 Prior treatment attempts .132 60 .011 .973 60 .208

a,bLilliefors significance correction.
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FIGURE 9.4A, B, C, AND D Normal Q-Q Plot by Condition Groups
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FIGURE 9.4A, B, C, AND D (Continued)
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independent variables. The skewness z-scores, kurtosis z-scores, S-W statistics,
and Q-Q plots demonstrated that the four distributions were not deviating sig-
nificantly from normality. The consistency of the evidence supports that the
Treatment Retention is normally distributed within the distributions of the
groups, meeting the assumption of normality.

Homogeneity of Variance

We want the variability of the scores across groups to be constant. First we will
calculate the variance ratio of the highest variance by the lowest variance of the
four groups (see Table 9.4). The highest variance is 3.802 for the¼$2 Prior
Treatment Attempts group, and the lowest variance is 2.254 for the Standard
Care group. The variance ratio (Fmax) is 3.802/2.254¼ 1.687. Since the groups
are equal in size, we can use the criterion of an Fmax, 10 being acceptable.
Clearly, our Fmax of 1.687 is less than 10.

Next, we will see if Levene’s test of homogeneity of variances also supports
meeting the underlying assumption. We are testing the null hypothesis of
equality of the error variances across the four groups. We want to retain the null
hypothesis concluding that the variances across the three groups are equal enough
using an alpha criterion of .01.

H0: σ2
e SC ¼ σ2

e SCþCM ¼ σ2
e0�1PriorAttempts¼ σ2

e$2PriorAttempts

The Levene’s statistic is found in the “assumptionscreen” output under the
heading Test of Homogeneity of Variance (see Tables 9.8 and 9.9) on the line called
“Based on mean.”

We fail to reject the H0 that the error variances are equal in both comparisons
since the probability value of .365 (SC vs. SC1CM) and .068 (0–1 vs. $2) are
greater than the α¼ .01. The underlying assumption of homogeneity of variance
has been met using the Levene’s statistic.

Summary of the Homogeneity of Variance Evidence

The evidence from both the variance ratio (Fmax) and the Levene’s statistic
support that the variances and error variances of the dependent variable are equal
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across the two groups of each independent variable. These findings paired with
the group sizes being equal allow us to conclude that the underlying assumption
of homogeneity of variance has been met.

Independence

There are different participants in each of the four groups, and each participant’s
score was produced independent of the other scores. However, if dependent
variable test scores across condition groups are correlated with each other when

TABLE 9.8 Levene’s Test Comparing Variances of the Treatment
Condition Groups (SC vs. SC1CM)

Test of Homogeneity of Variance

Levene’s
Statistic df1 df2 Sig.

TreatmentRetention Based on mean .828 1 118 .365
Based on median .477 1 118 .491
Based on median
and with adjusted df

.477 1 112.202 .491

Based on trimmed
mean

.800 1 118 .373

TABLE 9.9 Levene’s Test Comparing Variances of the Treatment Status
Groups (0–1 vs. $2)

Test of Homogeneity of Variance

Levene’s
Statistic df1 df2 Sig.

TreatmentRetention Based on mean 3.400 1 118 .068
Based on median 3.440 1 118 .066
Based on median
and with adjusted df

3.440 1 115.785 .066

Based on trimmed
mean

3.423 1 118 .067
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the scores are collected in the same order, the significance level of the ANOVA
can be smaller than it should be (Norusis, 2003). We are going to assess
the independence of observations by graphing the responses of participants
on the dependent variable by group condition based on the same order in which
measurements (observations) were obtained. The data in the SPSS Data View
spreadsheet are in a similar order by group based on when the data were collected.
We will need to create four columns of data to complete the analysis of matrix
scatter plots to assess independence.

Matrix Scatter Plot SPSS Commands

1. First, close all output that you have been working on. Under the column
labeled TreatmentRetention on the IBM SPSS Data View spreadsheet, left
click and hold on the first cell, which is 6, and drag down until you reach
ID# 30, which is the value 5 and the last participant score in the Treatment
Condition SC1Treatment Status 0–1 group. All of the numbers should be
in bold.

2. At the top of the screen, click on Edit and then Copy. This will copy the
data for pasting to a new column.

3. Go to the first empty column in the Data View and click on the first cell,
and it will be bolded.

4. At the top of the screen, click on Edit and then click on Paste; the data from
the SC1 0–1 group will be copied to the new column.

5. At the bottom left of the spreadsheet, click on Variable View and name the
new column as sc01 and change the decimals to 0.

6. Click on Data View button and create a new column for the other three
groups of 30 participants in the same way; call them sc2, sccm01, and sccm2.
Once you have completed the four new columns, File. Save.

7. At the top of the screen, click on Graphs.Legacy Dialogs. Scatter/
Dot.Matrix Scatter.Define.

8. Click over the four new columns you created to the space under Matrix
Variables.OK.
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Thematrix scatter plot (Figure 9.5) shows the scores of each group compared to
the other groups. The scores are in the order they were obtained and are paired as
circles in each graph representing two groups being compared. If the scores form a
diagonal straight line when any two groups are compared, then the scores are
correlated and not independent. There appear to be no clear linear trends between
paired scores across the groups. The points scatter inmany directions.We therefore
conclude that we have met the assumption of independence.

Summary of Underlying Assumptions Findings

The majority of evidence obtained shows that the distributions of scores on the
dependent variable in the four groups did not deviate from normality. Both

FIGURE 9.5 Matrix Scatter Plot to Assess Independence on Treatment
Retention Across the Condition Groups
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measures of homogeneity of variance supported fulfillment of the assumption of
constancy of variance across the groups. Finally, the scatter plots suggest that
independence of dependent variable scores was met. This information provides
support for conducting the 23 2 ANOVA to test the omnibus null hypotheses in
this study.

PROGRESS REVIEW

1. The reported data were collected from the sample partici-

pants on the dependent variable treatment retention as

measured by the number of successful weeks in treatment.

2. Four groups were formed based on combinations of the

independent variable treatment condition (SC and SCCM)

and treatment status (0–1 and $2).

3. Data were screened and met the criteria for missing data and

underlying assumptions.

Two-Way Analysis of Variance of the Omnibus H0’s

Two-Way ANOVA SPSS Commands

1. Click Analyze. click General Linear Model. click Univariate. click
over TreatmentRetention under Dependent Variable and TreatmentCondi-
tion and TreatmentStatus under Fixed Factor(s).

2. Click on the Plots button. click TreatmentCondition to Horizontal Axis
and TreatmentStatus to Separate Lines. click the Add button. click
Continue.

3. Click on the Options button. click on the boxes for Descriptive statistics,
Estimates of effect size, Observed power, and Homogeneity tests. the
Significance level should be .01. click on Continue. click OK.

4. Save generated output as Two-WayANOVA Results.
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The results of this analysis provide information to test the three omnibus null
hypotheses of the study:

H01 (Main Effect of Treatment Condition): There will be no significant mean
difference in treatment retention (successful weeks in treatment) when
comparing the effects of the standard care (SC) condition to the standard
care1 contingency management (CM) condition (H01: μ1¼ μ2).

H02 (Main Effect of Treatment Status): There will be no significant mean
difference in treatment retention (successful weeks in treatment) when
comparing the effects of 0–1 prior treatment attempts to $2 prior
treatment attempts (H02: μ1¼ μ2).

H03 (Interaction Effect of Treatment Condition & Treatment Status): There
will be no significant mean differences in treatment retention (successful
weeks in treatment) across levels of treatment condition and treatment
status (H03: μ13 μ2¼ 0).

The results of the two-way ANOVA are presented next. Additionally, inter-
pretations are provided for the magnitude of treatment effects (effect sizes), post
hoc power, post hoc multiple comparisons of means, and confidence intervals for
the mean differences.

Two-Way ANOVA Computer Analysis Results

Descriptive statistics are provided in the two-way ANOVA output (see Table 9.10)
showingmeans, standard deviations, and sample sizes by combinations of conditions.

Previously, we assessed for homogeneity of variance of the treatment reten-
tion across the two groups for each condition and found there was constancy of
variance. Table 9.11 shows the results of assessing the variances of all four groups
together, and it shows that the significance is .822, which is greater than the
α¼ .01. Thus, we fail to reject the null that the variances are equal, and this
result supports the previous finding of constancy of variance.

In the two-way ANOVA output (see Table 9.12) labeled Tests of Between-
Subjects Effects you will see the name of the independent variables (Treatment-
Condition, TreatmentStatus, and TreatmentCondition3TreatmentStatus) under
the heading Source that we created when the data were entered. We will be using
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the information in these rows to make decisions about rejecting or failing to reject
the three null hypotheses.

The results of testing all three null hypotheses are in Table 9.12. The results of
the first main effect of Treatment Condition (SC vs. SC1CM) on the dependent
variable Treatment Retention (successful weeks in treatment) are under the column
called Source across the rowTreatmentCondition.The test of significance of the first
main effect is in the F column (F¼ 28.605) and is significant at the p¼ .000, which
is less than our α¼ .01 and thus is significant, F(1, 116)¼ 28.605, p, .01. There
was a significant difference between the row means (see Table 9.10) of the SC level
(M¼ 5.183, SD¼ 1.501) versus the SC1CM level (M¼ 6.617, SD¼ 1.728).
The standard condition1 contingency management level increased significantly

TABLE 9.10 Descriptive Statistics by Conditions

Descriptive Statistics

Dependent Variable: TreatmentRetention

TreatmentCondition TreatmentStatus Mean Std. Deviation N

SC 0–1 5.567 1.501 30
12 4.800 1.424 30

Total 5.183 1.501 60
SC1CM 0–1 5.700 1.579 30

12 7.533 1.358 30
Total 6.617 1.728 60

Total 0–1 5.633 1.529 60
12 6.167 1.950 60

Total 5.900 1.765 120

TABLE 9.11 Levene’s Test of Equality of Error Variancesa

Dependent Variable:TreatmentRetention

F df1 df2 Sig.

.305 3 116 .822

Tests the null hypothesis that the error variance of the dependent variable

is equal across groups.
aDesign: Intercept1TreatmentCondition1TreatmentStatus1Treatment-

Condition3TreatmentStatus
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TABLE 9.12 Two-Way Analysis of Variance Results

Tests of Between-Subjects Effects

Dependent Variable: TreatmentRetention

Source

Type III
Sum

of Squares df
Mean
Square F Sig.

Partial
Eta-Squared

Noncent.
Parameter

Observed
Powera

Corrected model 120.867b 3 40.289 18.699 .000 .326 56.097 1.000
Intercept 4,177.200 1 4,177.200 1,938.738 .000 .944 1,938.738 1.000
TreatmentCondition 61.633 1 61.633 28.605 .000 .198 28.605 .996
TreatmentStatus 8.533 1 8.533 3.961 .049 .033 3.961 .270
TreatmentCondition3

TreatmentStatus
50.700 1 50.700 23.531 .000 .169 23.531 .986

Error 249.933 116 2.155
Total 4,548.000 120
Corrected total 370.800 119

aComputed using alpha¼ .01.
bR-squared¼ .326 (adjusted R-squared¼ .309).

c09
19

June
2012;

12:37:13



(p, .01) the number of successful weeks in treatment (Treatment Retention) of the
participants with cocaine disorders when compared to the standard condition level.

The second null hypothesis related to the main effect of Treatment Status on
Treatment Retention (successful weeks in treatment) generated a significant
probability of p¼ .049, which is larger than the criterion α¼ .01 so the effect is
not significant, F(1, 116)¼ 3.961, p. .01. There was not a significant difference
(p. .01) between the column means of successful weeks in treatment of the 0–1
prior treatment attempts level (M¼ 5.633, SD¼ 1.529) versus the $2 prior
treatment attempts level (M¼ 6.167, SD¼ 1.950).

The third null hypothesis related to the interaction effect was significant,
F(1, 116)¼ 23.531, p, .01. There were significant mean differences in treatment
retention (successful weeks in treatment) across levels of treatment condition and
treatment status.

The significant interaction is demonstrated in Figure 9.6 in relation to means
on treatment retention (weeks successful treatment completed) produced by the
independent variables. The two means of the TreatmentCondition (horizontal
axis) are compared to the two means of the TreatmentStatus level. (These cell
means are found in Table 9.10.) Parallel lines indicate no interaction, and
nonparallel lines reflect interaction. The lines in Figure 9.6 cross each other,
reflecting interaction (nonparallel lines) between the two independent variables
on the dependent variable. The two means across the levels of the treatment
condition for the treatment status level of 0–1 prior treatment attempts are
similar (SC [M¼ 5.567] vs. SC1CM¼ [M¼ 5.700]. In contrast, the two
means across the levels of the treatment condition for the treatment status level
$2 prior treatment attempts are quite different. The SC1CM mean on treat-
ment retention (M¼ 7.533) is considerably higher than the mean produced by the
SC condition level (M¼ 4.800). These cell means being graphically compared
can be statistically tested, which is called a simple effects analysis.

Simple Effects Analysis

A simple effect is the effect of one factor (IV) on the DV at one level of the other
factor. We are going to conduct this because we have a significant interaction
effect. We are going to use IBM SPSS syntax commands to obtain these results.
Syntax commands are the instructions that you write to the program to initiate an
action.
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1. Go to File.New. Syntax. and type exactly the syntax for treatment
condition at each treatment status level below.

2. When complete save as sytax1.

3. Select Run. click on All. and the results will be produced as an output;
save as output1.

Syntax for Treatment Condition at Each Treatment Status Level Results

MANOVA

TreatmentRetention BY TreatmentCondition(1 2) TreatmentStatus(1 2)

/METHOD¼UNIQUE

FIGURE 9.6 Estimated Marginal Means of Treatment Retention
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/ERROR WITHIN

/DESIGN¼TreatmentCondition WITHIN TreatmentStatus(1) Treat-
mentCondition WITHIN TreatmentStatus(2).

After clicking out of the first syntax you wrote, follow the same commands as
previously to produce the results of syntax for treatment status at each level of
treatment condition and save as syntax2 and output2.

Syntax for Obtaining Treatment Status at Each Level of Treatment
Condition Results

MANOVA

TreatmentRetention BY TreatmentCondition(1 2) TreatmentStatus(1 2)

/METHOD¼UNIQUE

/ERROR WITHIN

/DESIGN¼TreatmentStatus WITHIN TreatmentCondition(1) Treat-
mentStatus WITHIN TreatmentCondition(2).

Table 9.13 shows the results of two comparisons for Treatment Condition (SC
and SC1CM) at eachTreatment Status level (0–1 and$2). The first comparison is
between the cell means of Treatment Condition (MSC¼ 5.567) compared to
(MSC1CM¼ 5.700) at the treatment status level of 0–1 prior treatment attempts
(see Table 9.10). There is no significant difference since the Sig. of F value is .726
(p. .01). The second comparison is between the cell means of Treatment Con-
dition (MSC¼ 4.800) compared to (MSC1CM¼ 7.533) at the treatment status level

TABLE 9.13 Treatment Condition at Each Treatment Status Level Results

Tests of Significance for TreatmentRetention using UNIQUE sums of squares

Source of Variation SS DF MS F Sig. of F

WITHIN Cells 249.93 116 2.15
TreatmentCondition
WITHIN TreatmentStatus(1)

.27 1 .27 .12 .726

TreatmentCondition
WITHIN TreatmentStatus
(2)

112.07 1 112.07 52.01 .000
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of $2 prior treatment attempts (see Table 9.10). Participants with $2 prior
treatment attempts and who received the Standard Care1Contingency Man-
agement treatment showed a significantly higher number of successful weeks in
treatment than those with$2 prior treatment attempts who received the standard
care treatment, F(1, 116)¼ 52.01, p, .01.

In Table 9.14, the results of two comparisons for Treatment Status (0–1 and
$2) at each Treatment Condition level (SC and SC1CM) are shown. The first
analysis compares the means of (M0–1¼ 5.567) compared to (M$2¼ 4.800) at
SC, resulting in no significant difference (p. .01). Next, there was a significant
difference between the means of the treatment status level 0–1 prior treatment
attempts (M¼ 5.70) compared to the $2 prior treatment attempts level
(M¼ 7.533) at the treatment condition level of SC1CM, F(1, 116)¼ 23.40,
p, .01. Participants receiving SC1CM showed a significantly higher number of
successful weeks in treatment if they had $2 prior treatment attempts when
compared to those with 0–1 weeks of prior treatment. Overall, the group of
participants who showed the most success had $2 prior treatment attempts and
received the standard care plus contingency management treatment.

HYPOTHESIS TESTING STEP 6: MAKE DECISION
REGARDING THE H0 AND INTERPRET POST HOC
EFFECT SIZES AND CONFIDENCE INTERVALS

The decisions regarding rejecting or failing to reject the omnibus null hypotheses
of the main effects and interaction effect are presented in Table 9.15. Since we
rejected the interaction effect, the decisions and conclusions regarding the simple
effects analysis are in Table 9.16.

TABLE 9.14 Treatment Status at Each Level of Treatment Condition
Results

Tests of Significance for TreatmentRetention using UNIQUE sums of squares

Source of Variation SS DF MS F Sig of F

WITHIN Cells 249.93 116 2.15
TreatmentStatus WITHIN
TreatmentCondition(1)

8.82 1 8.82 4.09 .045

TreatmentStatus WITHIN
TreatmentCondition(2)

50.42 1 50.42 23.40 .000
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Magnitude of Treatment Effect—Post Hoc Effect Sizes

Please refer to theTests of Between-Subject Effects table of the ANOVA results output
(see Table 9.12). First, findTreatmentCondition in the Source column and go across
the row until you find the partial eta-squared value of η2p ¼ :198. Approximately

TABLE 9.15 Decisions and Conclusions Regarding Null Hypotheses
of Main Effects and Interaction Effect

Effects Null Hypotheses Decision Conclusion

Main effect of
Treatment Condition
(TC)

H01: μ1SC ¼ μ2 SC1CM Reject P, .01 Higher completed
weeks in treatment
for SC1CM vs. SC.

Main effect of
Treatment Status
(TS)

H02: μ10–1 ¼ μ2$2 Fail to reject
P..01

Difference in
completed weeks
was not found.

Interaction effect of
TC and TS

H03: μ1TC3 μ2 TS ¼0 Reject P, .01 Difference in
completed weeks
across levels of TC
and TS.

TABLE 9.16 Decisions and Conclusions Regarding Null Hypotheses
of Simple Effects

Effects Null Hypotheses Decision Conclusion

Treatment Condition at
0–1 prior treatment
attempts

H01: μSC¼ μSC+CM Fail to reject
P. .01

Difference in
completed weeks
was not found.

Treatment Condition at
$2 prior treatment
attempts

H02: μSC¼ μSC+CM Reject
P, .01

Higher completed
weeks in treatment
for SC1CM at $2
prior treatment
attempts.

Treatment Status at SC H03: μ0–1¼ μ$2 Fail to reject
P. .01

Difference in
completed weeks
was not found.

Treatment Status at
SC1CM

H04: μ0–1¼ μ$2 Reject
P, .01

Higher completed
weeks in treatment
for $2 prior
treatment attempts
at SC1CM.
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19.80 percent of the change in the dependent variable (TreatmentRetention) can be
attributed to the first independent variable (TreatmentCondition). The η2p ¼ :198

has a large strength effect according to Cohen’s convention for η2 where approxi-
mately 1 percent to 6 percent is small, .6 percent to 14 percent is medium, and
.14 percent is large.

Following the same procedure to find the effect size for the second main effect
(TreatmentStatus), the η2p ¼ :033. Only 3.3 percent of the variability in Treat-

mentRetention can be explained by the effect of TreatmentStatus, which reflects a
small effect. Finally, the interaction effect produced a large magnitude of treat-
ment effect, η2p ¼ :169.

Post Hoc Power

Power is the probability of correctly rejecting a false null hypothesis. We con-
ducted a priori power analysis to help us determine if a combination of our
planned alpha level, estimated effect size, and sample size would be enough to
detect a significant difference if it existed. The actual or post hoc power values
obtained after the data were analyzed are found in the Tests of Between-Subjects
Effects table (Table 9.12). The post hoc power for the TreatmentCondition main
effect is .996, indicating that given a post hoc effect size of .198, α¼ .01,
and a sample size of 120, the probability was approximately 99.6 times in 100
that we would correctly reject a false null hypothesis in favor of the alternative
hypothesis.

The post hoc power for the TreatmentStatus main effect is power¼ .270,
indicating that the probability was approximately 27 times in 100 that we
would correctly reject a false null hypothesis given a post hoc effect size of .033,
α of .01, and a sample size of 120. Certainly, the lower than expected post
hoc effect size affects the low power value. The power¼ .986 of the interaction
effect represented a high probability of correctly rejecting a false null hypothesis
in this study.

Confidence Intervals of Mean Differences

A confidence interval (CI) provides information about the probability that a given
interval will encircle the true difference between the population means. The
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probability used for the confidence interval is .99 since α¼ .01 in this study.
Conduct the following SPSS analyses to obtain the CI.99 for the Treatmen-
tRetention mean differences of the main effects of TreatmentCondition and
TreatmentStatus.

IBM SPSS Commands to Obtain CI.99 of Mean Differences

1. Analyze.Compare Means. Independent-Samples T Test.

2. Click over Treatment Retention to Test Variable(s): and click over Treatment
Condition to Grouping Variable:. click on the Define Groups button;
type the number 1 next to Group 1, type the number 2 next to Group 2,
and click on Continue.

3. Click on the Options button and type in 99%; click on Continue and click
on OK. This produces the output for Treatment Condition. Keep the output
open.

4. Now, follow the same procedures and replace Treatment Condition with
Treatment Status. Add the resulting output to the output you have
already produced. Then, save the output as Confidence Interval Two-Way
ANOVA.

In Table 9.17, at the end of the row Equal variances assumed and under
the column 99% Confidence Interval of the Difference, the CI.99 lower limit is
22.207 and the upper limit is 2.660. The .99 CI interval for the means
difference in TreatmentRetention comparing the SC and SC1CM conditions is
(22.207)2 (2.660). The probability is .99 that this interval will encircle the true
mean difference between the population means of TreatmentRetention between
the SC and SC1CM conditions for adults with cocaine abuse disorders.

The confidence interval for the means difference in TreatmentRetention
comparing the 0–1 prior treatment attempts and $ 2 prior treatment attempts is
(21.371)2 (.304) (see Table 9.18). The probability is .99 that this interval will
encircle the true mean difference between the population means of Treatment
Retention between the levels of 0–1 prior treatment attempts and $2 prior
treatment attempts for adults with cocaine abuse disorders.

c09 19 June 2012; 12:37:14

274 � CHAPT ER 9



TABLE 9.17 CI.99 for Mean Difference of Treatment Retention by Treatment Condition

Independent Samples Test

Levene’s
Test for

Equality of
Variances t-Test for Equality of Means

F Sig. t df
Sig.

(2-tailed)
Mean

Difference
Std. Error
Difference

99% Confidence
Interval of the
Difference

Lower Upper

TreatmentRetention Equal variances
assumed

.828 .365 24.850 118 .000 21.43333 .29553 22.20706 2.65961

Equal variances
not assumed

24.850 115.740 .000 21.43333 .29553 22.20731 2.65936
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TABLE 9.18 CI.99 for Mean Difference of Treatment Retention by Treatment Status

Independent Samples Test

Levene’s
Test for

Equality of
Variances t-Test for Equality of Means

F Sig. t df
Sig.

(2-tailed)
Mean

Difference
Std. Error
Difference

99% Confidence
Interval of the
Difference

Lower Upper

TreatmentRetention Equal variances
assumed

3.400 .068 21.667 118 .098 2.53333 .31990 21.37087 .30421

Equal variances
not assumed

21.667 111.649 .098 2.53333 .31990 21.37165 .30499
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PROGRESS REVIEW

1. The omnibus TreatmentCondition main effect was significant,

whereas the TreatmentStatus main effect was not significant.

The interaction effect also was significant.

2. Two simple effects were found to be significant. There were

higher completed weeks in treatment for participants who

received the SC1CM treatment compared to the SC treat-

ment at $2 prior treatment attempts. Moreover, those who

received the SC1CM treatment and had $2 prior treatment

attempts showed more completed weeks in treatment than

participants who had 0–1 prior treatment attempts.

3. The TreatmentConditionmain effect and the interaction effect

were large, and the TreatmentStatus main effect was small.

4. The post hoc power values were larger than the criterion of

.80 for the TreatmentCondition main effect and the interac-

tion effect. However, the power value (.270) was considerably

lower than expected, primarily influenced by the low post hoc

effect size.

5. The upper and lower limit of the .99 confidence intervals for

the mean difference of the SC versus SC1CM were negative

values, suggesting that this interval encircling the true mean

difference between the population means of Treatmen-

tRetention would be higher for the SC1CM condition. In

contrast, the CI.99 for the mean difference between 0–1 prior

treatment attempts and $2 prior treatment attempts was

inconclusive. The lower limit was a negative value and the

upper limit was a positive value, suggesting that either level

of TreatmentStatus could be higher in TreatmentRetention.
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FORMULA CALCULATIONS OF THE STUDY RESULTS

The formula calculations for the two-way ANOVA, post hoc effect sizes, and
confidence intervals are presented next. Calculated values are a little different
from the computer values due to rounding differences.

Two-Way ANOVA Formula Calculations

The specifications for constructing a two-way ANOVA summary table are pre-
sented first (Table 9.19). The information in this table captures most of the
important data needed to conduct the two-way ANOVA. Additionally, the
information in Table 9.19 will be useful for calculating post hoc effect sizes and
confidence intervals. We will complete the two-way ANOVA summary table for
this study after we calculate the necessary formulas. The information in Table
9.20 will be useful in calculating the formulas.

Factorial ANOVA Formulas

We will be using treatment, error, and total sum of squares (SS) formulas to
calculate the F-tests for the main effects, interaction effects, and simple effects.

TABLE 9.19 Two-Way ANOVA Summary Table Specifications

Source of Variation df
Sum of

Squares (SS)
Mean

Square (MS) F

Treatment(1)MainEffect KT12 1 Formula SST1/dfT1 MST1/MSE

Treatment(2)MainEffect KT22 1 Formula SST2/dfT2 MST2/MSE

Treatment (3)Int.Effect (dfT1)(dfT2) Formula SST3/dfT3 MST3/MSE

Error (E) (dfTot)2 (dfT1)2
(dfT2)2 (dfT3)

Formula SSE/dfE —

Total (TOT) NTOT2 1 Add up the
preceding cells

— —

dfT1¼KT12 1 is the first main effect degrees of freedom, where KT1 is the number of treatments,

groups, or means of the first main effect.

dfT2¼KT22 1 is the second main effect degrees of freedom, where KT2 is the number of treat-

ments, groups, or means of the second main effect.

dfT3¼ (dfT1)(dfT2) is the interaction effect degrees of freedom, where dfT1 is multiplied by dfT2.

dfE¼ (dfTot)2 (dfT1)2 (dfT2)2 (dfT3) is the error degrees of freedom, where the three treatment

dfs are substracted from the total degrees of freedom.

dfTOT¼NTOT2 1 is the total degrees of freedom based on N scores with one score unable to vary.
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TABLE 9.20 Study Data with Column and RowMeans by Subject
and Condition

Standard Care

Standard
Care1Contingency

Management

MeanRows

0–1 Prior Attempts
6 6
9 7
4 5
5 4
7 3
7 4
5 5
4 6
3 7
6 8
6 6
3 5
8 4
5 7
6 3
7 8
4 2
5 6
6 5
6 7
6 6
3 8
5 7
4 5
8 6
6 5
6 8
5 7
7 6
5 5

Mean 5.567 [SC][0–1] 5.700 [SC1CM][0–1] 5.633 [M0–1]
n530 n530 n560

(Continued)
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TABLE 9.20 Study Data with Column and RowMeans by Subject
and Condition (Continued)

Standard Care

Standard
Care1Contingency

Management

$2 Prior Attempts
4 8
6 10
2 8
4 7
5 6
7 7
5 8
3 9
4 11
5 8
6 7
3 9
7 7
6 6
4 7
4 8
5 6
3 5
2 8
6 8
6 7
5 8
7 9
4 6
6 7
5 5
7 7
4 8
5 9
4 7

Mean 4.800 [SC ][$2] 7.533 [SC1CM ][$2] 6.167 [M$2]
n530 n530 n560
MeanCols. 5.183[MSC] 6.617 [MSC+CM] 5.900 [GM]
n560 n560 n5 120
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Total (TOT)

SSTotal ¼
X

ðXi � GM : : : Þ2

where
P¼ sum up the resultants of the operations that follow:

Xi¼ individual score of the data set,

GM¼ grand mean (total mean weighted by group sample size)

¼Pð6� 5:900Þ2 þ ð9� 5:900Þ2 : : : ð9� 5:900Þ2ð7� 5:900Þ2
SSTotal ¼ 370:800

Treatment(1)MainEffect

SSTreatmentCondition ¼ ðnÞPðMi � GM : : : Þ2
¼ ð60Þ½ð5:183� 5:900Þ2 þ ð6:617� 5:900Þ2�
¼ ð60Þ½ð�:717Þ2 þ ð:717Þ2�
¼ ð60Þ½ð:514Þ þ ð:514Þ�
¼ ð60Þð1:028Þ

SSTreatmentCondition ¼ 61:680

Treatment(2)MainEffect

SSTreatmentStatus ¼ ðnÞPðMj � GM : : : Þ2
¼ ð60Þ½ð5:633� 5:900Þ2 þ ð6:167� 5:900Þ2�
¼ ð60Þ½ð�:267Þ2 þ ð:267Þ2�
¼ ð60Þ½ð:071Þ þ ð:071Þ�
¼ ð60Þð:142Þ
¼ 8:520

SSCellMeans ¼ ðnÞPðMij � GM : : : Þ2
¼ ð30Þ½ð5:567� 5:900Þ2 þ ð4:800� 5:900Þ2 þ ð5:700� 5:900Þ2

þ ð7:533� 5:900Þ2�
¼ ð30Þ½ð�:333Þ2 þ ð�1:100Þ2 þ ð�:200Þ2 þ ð1:633Þ2�
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¼ ð30Þ½ð:111Þ þ ð1:210Þ þ ð:040Þ þ ð2:667Þ�
¼ ð30Þð4:028Þ
¼ 120:840

Treatment (3)Int.Effect

SSInt:Effect ¼ SSCell Means�SSTreatmentCondition�SSTreatmentStatus

¼ 120:840�61:680�8:520

¼ 50:640

SSError ¼ SSTot:�SSTreatmentCondition�SSTreatmentStatus�SSInt:Effect
¼ 370:830�61:680�8:520�50:640

¼ 249:990

The observed F-values for testing the null hypotheses of the main effect of
Treatment Condition, the main effect of Treatment Status, and the interaction
effect of Treatment Condition3Treatment Status are in Table 9.21. Critical
values to compare the F-values to can be found using an online calculator.

1. Go to www.danielsoper.com. select Statistics Calculators. select
F-Distribution. select Critical F-value Calculator. type in 1 next toDegrees
of freedom 1:. type 116 next to Degrees of freedom 2:. type 0.01 beside
Probability level:. click on Calculate!

The F critical value is 6.85852061, rounded to 6.86. We place the F critical
value on the abscissa (base of the curve) of the F-distribution curve. Then, we place
the obtained omnibus ANOVA values of F¼ 28.6 (Treatment Condition),

TABLE 9.21 Two-Way ANOVA Summary Table

Source of Variation df Sum of Squares (SS) Mean Square (MS) F

Treatment(1)MainEffect 1 61.680 61.680 28.6
Treatment(2)MainEffect 1 8.520 8.520 3.9
Treatment(3)Int.Effect 1 50.640 50.640 23.5
Error (E) 116 249.990 2.155 —

Total (TOT) 119 370.830 — —
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F¼ 3.9 (Treatment Status), and F¼ 23.5 (Treatment Condition3Treatment
Status) on the curve. The area of rejection begins on the abscissa at the CV, and any
obtained F to the right of the CV informs us to reject the null hypothesis (see Figure
9.7). The main effect of Treatment Condition and interaction effect of Treatment
Condition3Treatment Status fall in the area of rejection.

Simple Effects Analysis

Since the interaction effect was significant, a simple effects analysis is conducted.
A simple effect is the effect of one factor (IV) on the DV at one level of the other
factor.

SSTreatmentCondition at 0–1 Prior Treatment Attempts

(30)[(5.56725.633)21 (5.70025.633)2]

(30)[(2.066)21 (.067)2]

(30)[(.004)1 (.004)]

(30)[(.008]

.24

SSTreatmentCondition at $2 Prior Treatment Attempts

(30)[(4.80026.167)21 (7.53326.167)2]

(30)[(21.367)21 (1.366)2]

FIGURE 9.7 Hypothesis Testing Graph Factorial ANOVA

0

Area of Retention

Fcrit. � 6.86 Fobt.(TC) � 28.6

Fobt.(TS) � 3.9 Fobt.(TS � TS) � 23.5

Area of Rejection

1 2 3 4 5 . . . 20 . . . .25 .. 30 ...
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(30)[(1.869)1 (1.866)]

(30)[(3.735]

112.05

SSTreatmentStatus at SC Condition

(30)[(5.5672 5.183)21 (4.80025.183)2]

(30)[(.384)21 (2.383)2]

(30)[(.147)1 (.147)]

(30)[(.294]

8.82

SSTreatmentStatus at SC+CM Condition

(30)[(5.70026.617)21 (7.53326.617)2]

(30)[(2.917)21 (.916)2]

(30)[(.841)1 (.839)]

(30)[(1.680]

50.40

Post Hoc Effect Sizes

The magnitude of treatment effects are calculated next for the main effects and
interaction effect using both eta-squared ðη2pÞ and omega squared (ω2).

Partial Eta-Squared (η2)

Eta-squared is a measure of practical significance ranging from 0 (small) to 1.0
(large). The information needed to calculate the following formulas are found in
Table 9.21.

TABLE 9.22 Simple Effects Summary Table

Source of Variation df
Sum of

Squares (SS)
Mean

Square (MS) F

TreatmentCondition
0–1 Prior treatment attempts 1 .24 .24 .111
$2 Prior treatment attempts 1 112.05 112.05 51.995
TreatmentStatus
SC condition 1 8.82 8.82 4.093
SC1CM condition 1 50.40 50.40 23.387
Error 116 249.990 2.155
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η2p ¼
Treatment ðEffectÞ Sum of Squares ðSSÞ

Treatment SSþ Error SS

Treatment Condition Main Effect ¼ 61:680
61:680þ 249:990

¼ 61:680
311:67

η2 ¼ :198

Treatment Status Main Effect

¼ 8:520
8:520þ 249:990

¼ 8:520
258:510

η2 ¼ :033

Interaction Effect

¼ 50:640
50:640þ 249:990

¼ 50:640
300:630

η2 ¼ :168

Omega-Squared (ω2)

Omega-squared is a more conservative (lower) because it estimates effect size
between the IV and DV in the population (Tabachnick & Fidell, 2007) and also
ranges from 0 to 1.0.

ω2 ¼ Treatment SS� ðK � 1ÞError MS
Treatment SSþ Error SSþ Error MS
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where Treatment SS¼ condition sum of squares

K¼ number of condition groups

Error MS¼ error mean square

Treatment SS¼ treatment sum of squares

Error SS¼ error sum of squares

Omega-squared is not reported in the Tests of Between-Subjects Effects
output, but it can be calculated using information from Table 9.12, Two-Way
Analysis of Variance Results.

Treatment Condition Main Effect

ω2 ¼ 61:633� ð2� 1Þ2:155
61:633þ 249:933þ 2:155

¼ 61:633� 2:155
313:721

¼ 59:478
313:721

ω2 ¼ :190

Treatment Status Main Effect

ω2 ¼ 8:533� ð2� 1Þ2:155
8:533þ 249:933þ 2:155

¼ 8:533� 2:155
260:621

¼ 6:378
260:621

ω2 ¼ :024

c09 19 June 2012; 12:37:17

286 � CHAPT ER 9



Interaction Effect

ω2 ¼ 50:700� ð2� 1Þ2:155
50:700þ 249:933þ 2:155

¼ 50:700� 2:155
302:788

¼ 48:545
302:788

ω2 ¼ :160

Confidence Intervals (.99) for Mean Differences

The CI.99 calculations for the mean differences of Treatment Retention by
Treatment Condition (SC vs. SC1CM) and Treatment Status (0–1 prior
treatment attempts versus $2 prior treatment attempts) are presented next.

CI.99 for Treatment Retention by Treatment Condition

1. MSE ¼ S21 þ S22=2

where MSE¼mean square error

S21 ¼ variance of the SC group

S22 ¼ variance of the SC1CM group

MSE¼ 2.2541 2.986/2¼ 5.236/2¼ 2.618

2. SEmeandiff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSE=n

p

where n¼ number of participants in a group

SEmeandiff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2:618Þ=60

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5:236=60

p
¼ ffiffiffiffiffiffiffiffiffi

:087
p ¼ :295
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3. tð:99Þð58df Þ ¼ 2:663

4. M1ðSCÞ �M2ðSCþCMÞ ¼ 5:183� 6:617 ¼ �1:434

5. CI:99Lower Limit ¼ �1:434� ð2:663Þð:295Þ
¼ �1:434� ð:786Þ
¼ �2:220

CI:99Upper Limit ¼ �1:434þ ð2:663Þð:295Þ
¼ �1:434þ ð:786Þ
¼ �:648

CI:99ð�2:220Þ μDifferenceð�:648Þ

CI.99 for Treatment Retention by Treatment Status

1. MSE¼ S21 þ S22=2

MSE¼ 2:338þ 3:802=2 ¼ 6:140=2 ¼ 3:070

2. SEmeandiff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSE=n

p

where n¼ number of participants in a group

SEmeandiff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð3:070Þ=60

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6:140=60

p
¼

ffiffiffiffiffiffiffiffiffi
:102

p
¼ :319

3. tð:99Þð58df Þ ¼ 2:663

4. M1ðSCÞ �M2ðSCþCMÞ ¼ 5:633� 6:167 ¼ �:534

5. CI:99Lower Limit ¼ �:534� ð2:663Þð:319Þ
¼ �:534� ð:849Þ
¼ �1:383
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CI:99Upper Limit ¼ �:534þ ð2:663Þð:319Þ
¼ �:534þ ð:849Þ
¼ :315

CI:99ð�1:383Þ μDifferenceð:315Þ

Study Results

The purpose of this study was to assess whether a contingency management
(CM) intervention when added to a standard care (SC) condition would increase
the retention of cocaine abusers in treatment. The researchers also focused on
whether the number of prior treatment attempts would produce an interaction
effect with the contingency management treatment on treatment retention. It was
expected that the addition of a contingency management treatment would
increase the length of stay in treatment of the cocaine abusers.

One independent variable in the study was treatment condition (SC vs.
SC1CM), and the second independent variable was treatment status (0–1 prior
treatment attempts vs. $2 prior treatment attempts). Treatment retention was
the dependent variable, and it is operationally defined as number of successful
weeks in treatment.

The study sample consisted of 120 cocaine abusers who sought treatment in
community programs. Fifty-four percent (n¼ 65) of the participants were males
while females comprised 46 percent (n¼ 55) of the sample. The participants’
average age was 35 and their average time abusing cocaine was over 10 years
(M¼ 10.50 years, SD¼ 7.23).

The a priori power analyses were conducted to assess the probability of
correctly rejecting false null hypotheses in favor of alternative hypotheses. Using
an alpha of .01, a sample size of 120, and estimated effect sizes from previous
research, the power analyses demonstrated that the a priori power was adequate to
conduct the study. All of the a priori power values were higher than the threshold
guideline of .80, which provided support for conducting the study.

The data were screened prior to testing the null hypotheses. The data set was
checked for data entry accuracy and no missing data were identified. There were
no univariate outliers related the treatment retention scores for the four groups.
All measures of normality, homogeneity of variance, and independence were
assessed as meeting the underlying assumptions.
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There was a significant main effect of TreatmentCondition on Treatmen-
tRetention, F(1, 116)¼ 28.605, p, .01. The mean number of completed weeks in
treatment was significantly higher for the participants in the SC1CM condition
(M¼ 6.617, SD¼ 1.728) compared to those in the SC condition (M¼ 5.183,
SD¼ 1.501). The magnitude of treatment effect was large, η2p ¼ :198. The mean

difference CI.99 was (22.207)2 (2.660).
There was not a significantmain effect ofTreatmentStatus onTreatmentRetention,

F(1, 116)¼ 3.961, p. .01. Themean number of weeks completed in treatment was
not significantly different comparing the participants who had 0–1 prior treatment
attempts (M¼ 5.633, SD¼ 1.529) to those who had $2 prior treatment attempts
(M¼ 6.167, SD¼ 1.950). Consistent with this finding was a small effect size,
η2p ¼ :033. The CI.99 of the mean difference was (21.371)2 (.304).

Combining TreatmentCondition and TreatmentStatus, the interaction effect
on TreatmentRetention was significant, F(1, 116)¼ 23.531, p, .01. The inter-
action effect generated a large magnitude of treatment effect, η2p ¼ :169.

Since the significant interaction effect showed differences in TreatmentReten-
tion across the levels of TreatmentCondition and TreatmentStatus, a simple effect
analysis was conducted to pinpoint the differences. The participants who had $2
prior treatment attempts showed a significantly higher number of completed weeks
of treatment if they were in the SC1CMcondition (M¼ 7.53) when compared to
those in the SC condition (M¼ 4.80), F(1, 116)¼ 52.01, p, .01. A second sig-
nificant simple effect was for participants who received the SC1CM condition;
they had a higher number of completed weeks of treatment if they had $2 prior
treatment attempts level (M¼ 7.533) compared to those who had 0–1 prior
treatment attempts (M¼ 5.70), F(1, 116)¼ 23.40, p, .01.

In conclusion, the standard care plus contingency management intervention
condition was more effective in increasing the number of weeks in treatment for
cocaine abusers when compared standard care. The length of prior treatment
attempts of the participants did not produce a significant effect on the number of
weeks in treatment. However, there were significant differences between the
levels of treatment condition and treatment status. Participants with $2 prior
treatment attempts demonstrated more completed days in treatment if they were
provided the standard care1 contingency management condition. Overall, the
group of participants who showed the most success had $2 prior treatment
attempts and received the standard care plus contingency management treatment.
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SUMMARY

A 23 2 ANOVA using a factorial research design was applied to a research
problem to assess whether a behavioral intervention known as contingency
management can improve treatment retention compared across prior treatment
attempts by cocaine abusers.

We conducted a priori power analyses and determined that study specifica-
tions supported the threshold probability of correctly rejecting the false null
hypotheses in favor of alternative hypotheses in our study. Data were screened
and met criteria for conducting the statistical analyses.

A 23 2 ANOVA was conducted assessing the significance of two main effects
and an interaction effect using data from Table 9.23. A simple effects analysis was
used to determine the effect of one factor (IV) on the DV at one level of the other
factor. The study results were presented.

PROBLEM ASSIGNMENT

Another 23 2 ANOVA problem with data set is found on the companion
website. Use the worksheet that is provided along with the steps used in this
chapter to complete the assignment.

TABLE 9.23 Two-Way Analysis of Variance Data

ID# TreatmentRetention TreatmentCondition* TreatmentStatus**

1 6 1 1
2 9 1 1
3 4 1 1
4 5 1 1
5 7 1 1
6 7 1 1
7 5 1 1
8 4 1 1
9 3 1 1
10 6 1 1
11 6 1 1

(Continued)
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TABLE 9.23 Two-Way Analysis of Variance Data (Continued)

ID# TreatmentRetention TreatmentCondition* TreatmentStatus**

12 3 1 1
13 8 1 1
14 5 1 1
15 6 1 1
16 7 1 1
17 4 1 1
18 5 1 1
19 6 1 1
20 6 1 1
21 6 1 1
22 3 1 1
23 5 1 1
24 4 1 1
25 8 1 1
26 6 1 1
27 6 1 1
28 5 1 1
29 7 1 1
30 5 1 1
31 6 2 1
32 7 2 1
33 5 2 1
34 4 2 1
35 3 2 1
36 4 2 1
37 5 2 1
38 6 2 1
39 7 2 1
40 8 2 1
41 6 2 1
42 5 2 1
43 4 2 1
44 7 2 1
45 3 2 1
46 8 2 1
47 2 2 1
48 6 2 1
49 5 2 1
50 7 2 1
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ID# TreatmentRetention TreatmentCondition* TreatmentStatus**

51 6 2 1
52 8 2 1
53 7 2 1
54 5 2 1
55 6 2 1
56 5 2 1
57 8 2 1
58 7 2 1
59 6 2 1
60 5 2 1
61 4 1 2
62 6 1 2
63 2 1 2
64 4 1 2
65 5 1 2
66 7 1 2
67 5 1 2
68 3 1 2
69 4 1 2
70 5 1 2
71 6 1 2
72 3 1 2
73 7 1 2
74 6 1 2
75 4 1 2
76 4 1 2
77 5 1 2
78 3 1 2
79 2 1 2
80 6 1 2
81 6 1 2
82 5 1 2
83 7 1 2
84 4 1 2
85 6 1 2
86 5 1 2
87 7 1 2
88 4 1 2
89 5 1 2

(Continued)
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TABLE 9.23 Two-Way Analysis of Variance Data (Continued)

ID# TreatmentRetention TreatmentCondition* TreatmentStatus**

90 4 1 2
91 8 2 2
92 10 2 2
93 8 2 2
94 7 2 2
95 6 2 2
96 7 2 2
97 8 2 2
98 9 2 2
99 11 2 2
100 8 2 2
101 7 2 2
102 9 2 2
103 7 2 2
104 6 2 2
105 7 2 2
106 8 2 2
107 6 2 2
108 5 2 2
109 8 2 2
110 8 2 2
111 7 2 2
112 8 2 2
113 9 2 2
114 6 2 2
115 7 2 2
116 5 2 2
117 7 2 2
118 8 2 2
119 9 2 2
120 7 2 2

*1¼SC

*TreatmentCondition

1¼SC

2¼SC1CM

**TreatmentStatus**

1¼0–1 Prior treatment attempts.

2¼$2 Prior treatment attempts.
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KEY TERMS

between-subjects ANOVA design

factorial design

factors

independent

interaction effects

main effects

mixed-subjects ANOVA design

orthogonal

simple effects analysis

232 factorial design

within-subjects ANOVA design
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Chapter 10

ANALYSIS OF COVARIANCE

LEARNING OBJECTIVES

� Demonstrate how to develop research questions and
hypotheses as they relate to a research problem incorpo-
rating an independent variable, a covariate, and a depen-
dent variable.

� Conduct data diagnostics to assess underlying assumptions.

� Execute conducting a one-way analysis of covariance
(ANCOVA) using IBM SPSS and by hand.

� Interpret post hoc effect size analyses using eta-squared
(η2) and confidence intervals.

� Understand the study findings combining the various
analyses.
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A s stated in Chapter 7, a one-way analysis of variance (ANOVA) was
used to evaluate the effects of treatment programs to reduce depression
among adolescents. The independent variable was the treatment pro-

gram. The dependent variable (DV) was the symptoms of depression and was
expected to change as a result of the impact of the IV. Researchers may come to
realize that extraneous variables at times interfere with the cause-and-effect rela-
tionship planned for a study. In order to discover the independent variable’s
effect on the dependent variable only, the effects of the extraneous variable(s)
must be accounted for and extracted from the results. Covariates represent one or
more other variables that are affecting the DV, but are not designated as IVs.
They usually cause unwanted variance.

An analysis of covariance (ANCOVA) is a statistical method that uses
both the analysis of variance and a regression analysis. An ANCOVA adjusts
the posttest means to what they would be if all groups started out equally on the
covariate.

The research problem presented in this chapter is similar to the problem in
Chapter 9. One condition is standard care (SC), and the other condition is
standard care with contingency management (SC1CM). The dependent vari-
able is longest duration of abstinence (LDA), operationally defined as the number
of weeks of the longest duration of objectively verified continuous abstinence
achieved. Age is considered an extraneous variable in this study and treated as a
covariate to be partialed out of the dependent variable. This example is simulated
based on a study by Rash, Alessi, and Petry (2008).

RESEARCH PROBLEM

The purpose of this research is to examine whether substance abuse treatment
condition controlling for age affects longest duration of abstinence from drugs.
Older participants are expected to have more weeks of objectively verified con-
tinuous abstinence achieved. Older participants also are hypothesized to have
more prior attempts at drug rehabilitation treatment programs and more coping
skills for relapse prevention. Participants in drug rehabilitation treatment are
randomly assigned to one of the two treatment conditions: (1) standard care and
(2) standard care plus contingency management. This resulted in 114 participants
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randomly distributed in the treatment condition groups, standard care (n1¼ 57)
or standard care plus contingency management (n2¼ 57).

STUDY VARIABLES

Independent Variable

The independent variable (IV) is a drug treatment program that is intended to
influence the dependent variable (DV) (longest duration of abstinence) in this
study. The drug treatment program is operationally defined (OD) as having two
conditions in this study: (1) standard care and (2) standard care plus contingency
management. The IV is active since the conditions can be manipulated. The
scale of measurement of the IV is discrete-nominal (or categorical). Analysis of
covariance can be used with several independent and dependent variables.
Moreover, more than one covariate can be used at the same time. In this study,
one independent variable, one dependent variable, and one covariate are used.

Dependent Variable

The dependent variable (DV) is the longest duration of abstinence (LDA). The
DV in this study is operationally defined as the number of weeks of longest
duration of objectively verified continuous abstinence. Participants were assessed
on their longest duration of objectively verified continuous abstinence from zero
to 12 weeks; therefore it represents a continuous scale of measurement.

Covariate

The covariate is age of the participants and is continuously scaled. The covariate is
used to measure the extraneous variable of age that acts like an unwanted inde-
pendent variable affecting the dependent variable. For example, if the participants
in one of the groups (either SC or SC1CM) are older than the participants in
the other group, age may confound an understanding of the effects of Treatment
Condition (IV) on the DV (LDA). ANCOVA partials out the unwanted dif-
ferential effects of age so that we have a more accurate understanding of the effects
of the IV to the DV.
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RESEARCH DESIGN

The research design used for this example is a two-group posttest-only randomized
experimental design with covariate. We are comparing the dependent variable’s
results adjusted by the covariate age of the two groups of adults receiving different
substance abuse treatment conditions. This is an experimental group design
involving random assignment of participants to conditions, with a manipulated
independent variable. The research design can be diagrammed as follows:

R XSC Oadj:for:age

R XSCþCM Oadj:for:age

The R represents random assignment to the conditions. The conditions by
groups are represented by XSC (standard care) or XSC1CM (standard care plus
contingency management). The observation (Oadj.for.age) is the greatest number of
consecutive weeks of objectively verified continuous abstinence achieved adjusted
for the covariate age.

Statistical Analysis: Analysis of Covariance (ANCOVA)

Analysis of covariance (ANCOVA) is a statistical method that utilizes both analysis of
variance and regression analysis. The introduction of the covariate represents some
other variable that is affecting theDV.The researcher is interested in knowingwhat the
outcome of the posttest would be if the covariate was not there. Covariates are usually
measured unwanted, extraneous variables (EVs) that are correlated with the DV.

The following assumptions underlie the requirement to use the ANCOVA.
The ANCOVA has similar assumptions that were assessed in the ANOVA
research problem in Chapter 7, with a few exceptions. The underlying assump-
tions of the ANCOVA are normality, homogeneity of variance, independence,
and homogeneity of regression (slope).

PROGRESS REVIEW

1. The research problem relates to comparing the effects of

substance abuse treatment condition (independent variable)
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on the number of weeks of longest duration of objectively

verified continuous abstinence achieved (dependent vari-

able) when adjusted for the covariate age among adults. The

independent variable is operationally defined as standard

care, and standard care and contingency management.

2. The 114 adults with substance abuse problems are randomly

assigned to the two treatment conditions.

3. The research method is a two-group posttest-only random-

ized experimental design using a covariate, and the statistical

method is a one-way analysis of covariance.

STATING THE OMNIBUS (COMPREHENSIVE)
RESEARCH QUESTION

Will there be significant mean differences in longest duration of abstinence across
the substance abuse treatment conditions (standard care, and standard care plus
contingency management) when adjusted for the covariate of age?

HYPOTHESIS TESTING STEP 1: ESTABLISH THE
ALTERNATIVE (RESEARCH) HYPOTHESIS (Ha)

Omnibus Narrative Alternative Hypothesis (Ha)

Ha: There will be a significantly lower number of reported weeks of
longest duration of abstinence when adjusted for the covariate of age for
the standard care treatment group when compared to the standard care
plus contingency management group.

Symbolic Ha

Ha : μSCadj , μSCþCMadj

where μSC is the population mean of the number of weeks of longest duration of
objectively verified continuous abstinence of participants in the standard care
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condition being estimated by the sample mean, and μSC+CM is the population
mean of the number of weeks of longest duration of objectively verified con-
tinuous abstinence for participants in the standard care plus contingency man-
agement condition being estimated by the sample mean. The reference to “adj.”
refers to the posttest means of the number of weeks of longest duration being
adjusted using the covariate age.

This is a directional alternative hypothesis because it is expected that the
standard care plus contingency management treatment condition will signifi-
cantly increase the number of reported weeks of longest duration of abstinence
when compared to the standard care treatment condition.

HYPOTHESIS TESTING STEP 2: ESTABLISH
THE NULL HYPOTHESIS (H0)

The omnibus null hypothesis is stated in both narrative and symbolic formats in
the second step of the hypothesis-testing process.

Omnibus Narrative Null Hypothesis (H0)

H0: There will be no significant mean differences in longest duration of
abstinence across the two substance abuse treatment conditions (standard
care and standard care plus contingency management) with a covariate
adjustment of age.

Symbolic H0

H0: μSCadj ¼ μSCþCMadj

HYPOTHESIS TESTING STEP 3: DECIDE ON A RISK
LEVEL (ALPHA) OF REJECTING THE TRUE H0

CONSIDERING TYPE I AND II ERRORS AND POWER

During this step of the hypothesis-testing process, we choose an alpha criterion
(α) that will take into consideration both Type I (alpha) and Type II (beta)
errors. The decision is made to select an alpha level of .01 for this example
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to provide more rigor in assessing the difference on LDA between the two
conditions.

A Priori Power Analysis

We use the chosen α level of .01 and combine it with anticipated sample size
and an estimated (a priori) effect size and determine if we have enough power to
conduct the study.

We will use alpha, sample size, and estimated effect size to conduct an a priori
power analysis. We can combine these three elements together mathematically
and determine if our planned alpha, sample size, and estimated effect size for our
proposed study converge into an acceptable probability (power) necessary to find
a significant difference in means if it exists.

We have decided to use an alpha of .01 and we are planning on using a sample
size of 114. We will use an average η2¼ .11 from four previous studies. Now we
can combine the three elements to identify the probability of correctly rejecting a
false null hypothesis in favor of the alternative hypothesis (power).

Power Analysis Using G*Power 3.1.2

Using a computer program such as G*Power 3.1 (Erdfelder, Faul, & Buchner,
2010), you can conduct the power analysis using G*Power 3.1 by following the
steps presented next. The steps of downloading free G*Power 3.1 are located in
Chapter 7.

1. Under Test family, click on F tests (see Figure 10.1A).

2. Under Statistical test, click on ANCOVA: Fixed effects, main effects and
interactions.

3. Under Type of power analysis, click on A priori: Compute required
sample size - given α, power, and effect size.

4. Click on the button called Determine to the left of Effect size f, and in the
new attached window to the right, click on the Direct circle and type 0.11
in the box next to Partial η2; then click on the button that says Calculate
and transfer to main window and then click on the Close button.

5. For the next row, α err prob, type in our α¼ .01.
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6. For Power type in the criterion threshold we are using, which is 0.80.

7. The Numerator df in our study is 1.

8. There are two groups in our study, so type in 2.

9. There is one covariate in our study, so type in 1.

10. Click on Calculate and you will see that we need a total sample size¼ 98 to
reach an actual power of .8005192 (see Figure 10.1B). Our total sample of
114 exceeds a needed sample size. Considering the combined elements in
our study of total sample size of 114, η2¼ .11, and α¼ .01, a power greater
than .80 should be achieved. Therefore, we should be confident in correctly
rejecting a false H0 in our study and thus avoiding making a Type II error.

FIGURE 10.1A AND B G*Power Screen Shots for ANCOVA Problem
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FIGURE 10.1A AND B (Continued)
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PROGRESS REVIEW

1. We stated the research question for the problem.

2. We completed the first two steps of the hypothesis-testing

process by stating the alternative and null hypotheses in

narrative and symbolic formats.

3. Next, we decided on the risk we are willing to take when

rejecting a true null hypothesis by choosing alpha (α). We

chose α¼ .01.

4. We conducted a power analysis using G*Power to make

sure that our probability of correctly rejecting a false null

hypothesis was adequate (power¼ .80) before moving ahead

with the study. This provided information necessary to con-

tinue on with the study.

HYPOTHESIS TESTING STEP 4: CHOOSE APPROPRIATE
STATISTIC AND ITS SAMPLING DISTRIBUTION TO TEST

THE H0 ASSUMING H0 IS TRUE

We will be using an ANCOVA to test the null hypothesis: H0: μ1adj¼μ2adj. We
are going to compare the means of weeks of longest duration of abstinence across
the conditions (standard care and standard care plus contingency management)
for significant mean differences. The purpose of the ANCOVA is to increase the
sensitivity of the test of main effects and interactions by reducing the error term;
the error term is adjusted for, and it is hoped reduced by, the relationship
between the DV and the covariate. Another purpose of the ANCOVA is to adjust
the means of the DVs themselves to what they would be if all participants scored
equally on the covariate.
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HYPOTHESIS TESTING STEP 5: SELECT SAMPLE, COLLECT
DATA, SCREEN DATA, COMPUTE STATISTIC, AND

DETERMINE PROBABILITY ESTIMATES

The study sample participants are selected and data are collected from them. The
data are assessed for data accuracy, missing values, and univariate outliers, and to
determine if the underlying assumptions of the ANCOVA have been satisfied.

Sample Selection and Assignment

A sample for this study was selected using purposive sampling that involved the
application of inclusion and exclusion criteria. The sample consisted of 114
treatment-seeking substance abusers who were randomly assigned to one of two
treatment conditions. This resulted in the following number of participants in
each treatment condition group: standard care (n1¼ 57) and standard care with
contingency management (n3¼ 57).

Exploratory Data Analysis

The purposes of exploratory data analysis (data screening) are to ensure the data has
been properly entered, extracted, or imported into the statistical spreadsheet; locate
and address any missing data; handle potential outliers; and assess for univariate
underlying assumptions. This process is essential to maintain data integrity.

The following IBM SPSS commands are used to gather descriptive statistics.
To start, we assess the dependent variable of longest duration of abstinence
(DVLDA) and the covariate (COVAge) for univariate outliers. Then, we evaluate
COVAge and LDA by group for normality and homogeneity of variance
by examining histograms, skewness, kurtosis, the Shapiro-Wilk statistic, normal
Q-Q plots, and Levene statistics.

Data Screening IBM SPSS Commands

1. Analyze.Descriptive Statistics.Descriptives.

2. Click over COVAge and DVLDA to under Variable(s): and check the box
called Save standardized values as variables and click OK. This command
produces z-scores on the Data View.
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3. Analyze.Descriptive Statistics.Explore. This command results in
information used for assessing underlying assumptions.

4. Click over the covariate (COVAge) and the dependent variable (DVLDA) to
Dependent List.

5. Click over independent variable IVTreatment Condition to Factor List.

6. Do not change Display choices—leave on Both.

7. Click on the Plots button in the upper right corner. Then, select Normality
plots with tests.

8. Under Spread vs. Level with Levene Test, click on Untransformed.

9. Click on Continue.

10. Click on OK.

The highest and lowest postive z-scores for the covariate age and the
dependent variable longest duration of abstinence are identified in Table 10.1.
The z-scores were produced on the Data View spreadsheet as new columns. The
z-scores are transformed scores of participants on COVAge and DVLDA.
None of the z-scores are greater than a63.29 (P¼ .001, two-tailed). As such, we
conclude that there are no participant scores that represent univariate outliers
on either the covariate or dependent variable.

The output of skewness, kurtosis, and standard errors for CovAge and
DVLDA by group are presented in Table 10.2.

TABLE 10.1 Highest 6z-Scores for the Covariate
Age and the Dependent Variable Longest Duration
of Abstinence

Highest Outlier? Highest Outlier?
1 z $63.29 2z $63.29

CovAge

2.858* No 21.588 No

DVLDA

2.664 No 22.119 No

*This number is rounded to three decimals.
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TABLE 10.2 Skewness, Kurtosis, and Standard Error Values by Group

Descriptives

IVTreatmentCondition Statistic Std. Error

CovAge SC Mean 31.82 1.171

95% Confidence Interval

for Mean

Lower Bound 29.48

Upper Bound 34.17

5% Trimmed Mean 31.31

Median 31.00

Variance 78.147

Std. Deviation 8.840

Minimum 19

Maximum 57

Range 38

Interquartile Range 15

Skewness .681 .316

Kurtosis .039 .623

SC1CM Mean 34.75 1.191

95% Confidence Interval

for Mean

Lower Bound 32.37

Upper Bound 37.14

5% Trimmed Mean 34.37

Median 34.00

Variance 80.796

Std. Deviation 8.989

Minimum 20

Maximum 59

Range 39

Interquartile Range 15

Skewness .461 .316

Kurtosis 2.315 .623

DVLDA SC Mean 4.79 .245

95% Confidence Interval

for Mean

Lower Bound 4.30

Upper Bound 5.28

5% Trimmed Mean 4.80

Median 5.00

Variance 3.419

Std. Deviation 1.849

Minimum 1

Maximum 9

Range 8

Interquartile Range 3

(Continued)
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We divide the skewness statistics by the standard errors and examine if there
is significant skewness by comparing the skewness z-scores to the critical value
of63.29. Since the skewness z-score values are less than63.29, we conclude that
the distributions are not significantly skewed (see Table 10.3).

We follow the same procedures to examine the kurtosis of the distributions of
the groups. (See Table 10.4.) The researcher will divide the kurtosis statistic by
its standard error and compare the z-score to the critical value of63.29 to see if a
group distribution significantly departs from normality.

The kurtosis z-scores are all within acceptable standards of being normally
distributed (,63.29).

The Shapiro-Wilk (S-W) statistic is the next statistic we will use to establish
whether the distribution of the group conditions are normally distributed. (See
Table 10.5.) Remember, we want to retain the null hypothesis, which indicates
that the sample distribution that we are looking at is not deviating significantly
from normal.

TABLE 10.2 Skewness, Kurtosis, and Standard Error Values by Group
(Continued)

Descriptives

IVTreatmentCondition Statistic Std. Error

Skewness 2.189 .316

Kurtosis 2.385 .623

SC1CM Mean 6.07 .283

95% Confidence Interval

for Mean

Lower Bound 5.50

Upper Bound 6.64

5% Trimmed Mean 6.06

Median 6.00

Variance 4.566

Std. Deviation 2.137

Minimum 2

Maximum 11

Range 9

Interquartile Range 4

Skewness .042 .316

Kurtosis 2.649 .623
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TABLE 10.3 Skewness z-Scores by Treatment Condition Group

Variable/Condition
Skewness z

(Stat./Std. Error5Z)
Skewness
Direction

Sig. Departure?
(.63.29)

CovAge

Standard Care .681/.316¼2.155 Positive No

Standard Care1

Contingency Management

.461/.316¼ 1.459 Positive No

DVLDA

Standard Care 2.189/.316¼2.598 Negative No

Standard Care1

Contingency Management

.042/.316¼ .133 Positive No

TABLE 10.4 Kurtosis z-Scores by Substance Treatment Group

Variable/Condition
Kurtosis z

(Stat./Std. Error5Z)
Kurtosis
Direction

Sig. Departure?
(. 63.29)

CovAge

Standard Care .039/.623¼ .063 Leptokurtic No

Standard Care1

Contingency

Management

2.315/.623¼2 .506 Platykurtic No

DVLDA

Standard Care 2.385/.623¼2.618 Platykurtic No

Standard Care1

Contingency

Management

2.649/.623¼21.042 Platykurtic No

TABLE 10.5 Shapiro-Wilk Statistics by Substance Treatment Condition

Tests of Normality

Kolmogorov-Smirnova Shapiro-Wilk

IVTreatment
Condition Statistic df Sig. Statistic df Sig.

CovAge SC .111 57 .078 .947 57 .014

SC1CM .104 57 .192 .964 57 .084

DVLDA SC .147 57 .004 .963 57 .079

SC1CM .107 57 .161 .968 57 .131

aLilliefors significance correction
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Since the significant probability levels of the Shapiro-Wilk statistic are all
larger than the set alpha level of .01, we conclude these group distributions on
both CovAge and DVLDA are not deviating significantly from being normal.

Last, we will observe the Q-Q plot for each distribution (see Figure 10.2A
and B). While the Q-Q plots look better for the DVLDA (see Figure 10.3A and B),
the majority of points of all distributions for both variables fall on or near the line.
Thus, the Q-Q plots support the normality of the distributions.

The integrated results of the analyses of univariate outliers, skewness z-scores,
kurtosis z-scores, Shapiro-Wilk statistics, and the Q-Q plots support the normality
of the distributions.

Homogeneity of Variance

In this study we are expecting that the independent variable (drug rehabilitation
treatment conditions) will affect the means of the covariate age and the dependent

FIGURE 10.2A AND B Normal Q-Q Plots of CovAge by Groups
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variable (longest duration of abstinence) but not the variances of the groups.
We want the variances of the two groups (standard care and standard care plus
contingency management) on the covariate and the dependent variable to be
relatively constant. We are going to use the variance ratio (Fmax), which is the ratio
of the largest group variance to the smallest group variance between the two
condition groups providing simple descriptive statistics for initial screening.

The two groups have the same number of participants, so the group size ratio
is 57/57¼ 1.00; since this is well below a group size ratio of 4, we can apply the
Fmax¼ 10 guideline (Tabachnick & Fidell, 2007).

The SC1CM group had the highest variance on CovAge and the SC group
variance had the lowest (see Table 10.2). The Fmax¼ 80.796/78.147¼ 1.034,
and the ratio is well below 10.

Again for the DVLDA variable, the SC1CM group had the highest variance
of 4.566 and the standard care group showed the lowest variance of 3.419. The
Fmax¼ 4.566/3.419¼ 1.335 and is ,10. The low variance ratios support

FIGURE 10.2A AND B (Continued)
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homogeneity of variance across the two groups on both variables. We next confirm
this finding with the results of the Levene’s test.

We test the following null hypothesis of equality of the error variances
between the two groups when using Levene’s test of homogeneity of variance. We
want to retain the null hypothesis concluding that the variances across the two
groups on both variables are equal enough using an alpha criterion of .01.

H0: σ2e standard care ¼ σ2e standard care plus contingency management

The Levene’s statistic is found in the “assumptionscreen” output under the
heading Test of Homogeneity of Variance (see Table 10.6) on the line called “Based
on mean.”

We fail to reject the H0 that the error variances are equal since the probabi-
lity values (Sig.) based on the mean (CovAge¼ .772 and DVLDA¼ .306) are

FIGURE 10.3A AND B Normal Q-Q Plots of DVLDA by Groups
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TABLE 10.6 Levene’s Test of Homogeneity of Variance for CovAge and
DVLDA

Test of Homogeneity of Variance

Levene’s Statistic df1 df2 Sig.

CovAge Based on mean .084 1 112 .772

Based on median .066 1 112 .797

Based on median and

with adjusted df

.066 1 111.948 .797

Based on trimmed mean .076 1 112 .783

DVLDA Based on mean 1.056 1 112 .306

Based on median 1.221 1 112 .272

Based on median and

with adjusted df

1.221 1 110.669 .272

Based on trimmed mean 1.057 1 112 .306

FIGURE 10.3A AND B (Continued)
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greater than α¼ .01. The evidence from the variance ratios and the Levene’s
statistic suggests that the underlying assumption of homogeneity of variance has
been met.

Independence

We are going to assess the independence of observations by graphing the
responses of participants on the dependent variable by treatment condition based
on the same order in which measurements (observations) were obtained. The data
in the IBM SPSS Data View spreadsheet are in a similar order by group based on
when the data were collected. We will need to create two columns of data to
complete the matrix scatter plot analysis to assess independence.

Matrix Scatter Plot IBM SPSS Commands

1. Under the column labeled DVLDA on the IBM SPSS Data View spread-
sheet, left click and hold on the first cell, which is score 3, and drag down
until you reach row 57, which is score 6 and is the last participant score in the
standard care group (treatment condition).

2. At the top of the screen, click on Edit and then Copy.

3. Go to the first empty column, click on the first cell, and it will be bolded.

4. At the top of the screen, click on Edit and then click on Paste and the data
from the standard care group will be copied to the new column.

5. At the bottom left of the spreadsheet, click on Variable View; name the new
column on the fifth row as LDASC and change the decimals to 0.

6. Click on Data View button and create a new column for the 57 standard care
plus contingency management scores (treatment condition 2) in rows 58
through 114 in the same way. Name the new column as LDASCCM. Once
you have completed the two new columns, click File. Save.

7. At the top of the screen, click on Graphs.Legacy Dialogs. Scatter/
Dot.Matrix Scatter.Define.

8. Click over the two new columns (SCLDA, LDASCCM) to the space under
Matrix Variables.OK.
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The matrix scatter plot (Figure 10.4) shows the scores of each group com-
pared to the other groups. The scores are in the order they were obtained and are
paired as circles in each graph. Since the points scatter in many directions, we
conclude that we have met the assumption of independence.

Homogeneity of Regression (Slope) Assumption

In addition to testing the assumption of independence and the assumption of
normality, we need to conduct a test of homogeneity of regression (slope)
assumption. This test examines the interaction between the covariate (age) and
the independent variable (treatment condition) in the prediction of the depen-
dent variable (longest duration of abstinence). We do not want the interaction
between the dependent variable and the covariate to be significant. A significant

FIGURE 10.4 Matrix Scatter Plot to Assess Independence
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interaction indicates that the difference on the dependent variable (LDA)
between the treatment conditions is different because of the covariate (age).

Homogeneity of Regression (Slope) IBM SPSS Commands

1. Click Analyze, click General Linear Model, and then click Univariate.

2. Click the dependent variable (DVLDA), click the arrow to move it to the
Dependent variable: box.

3. Click the independent variable (IVTreatmentCondition), click the arrow to
move it to the Fixed Factor(s) box.

4. Click the covariate (COVAge), click the arrow tomove it theCovariate(s): box.

5. Click on the Model button.

6. Click the Custom circle under Specify Model.

7. Click over IVTreatCond and COVAge to the space under Model.

8. Next, holding down the Ctrl key, click both the IVTreatmentCondition and
COVAge together in the Factors & Covariates box. Check to see that the
default option Interaction is specified in the drop-down menu in the Build
Term(s) box. If it is not, select it.

9. Click the arrow going right and COVAge * IVTreatmentCondition should
now appear in the Model box along with IVTreatCond and CovAge.

10. Click Continue. This will bring you back to the Univariate screen.

11. Click OK.

In Table 10.7, find the interaction effect called IVTreatCond*COVAge under
the column Source. The significance value (Sig.) is P¼ .022. The interaction is
not significant (P. .01). We conclude that the assumption of homogeneity of
regression is tenable and proceed with the ANCOVA.

Summary of Underlying Assumptions Findings

The evidence obtained demonstrates that the distributions of scores on the
dependent variable for both condition groups did not deviate from normality.
Both measures of homogeneity of variance supported the assumption of equality.
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The scatter plots suggested that independence was met. The homogeneity of
regression (slope) was not significant. This information provides support to
conduct the ANCOVA statistic to test the omnibus null hypothesis in this study.

PROGRESS REVIEW

1. We collected the data on the dependent variable longest

duration of abstinence from the 114 participants who were

randomly assigned to one of two condition groups (standard

care and standard care plus contingency management).

2. Problems with data accuracy and missing data were ruled out

in the early steps of the data screening process.

3. The distributions of the covariate age and the dependent

variable longest duration of abstinence (LDA) scores of two

condition groups were assessed for compliance to meeting

the underlying assumptions of using the ANCOVA. The pos-

itive results of this screening assessment allow us to conduct

(continued)

TABLE 10.7 Homogeneity of Regression (Slope)

Tests of Between-Subjects Effects

Dependent Variable: DVLDA

Source Type III Sum of Squares df Mean Square F Sig.

Corrected model 169.178a 3 56.393 19.101 .000

Intercept 22.937 1 22.937 7.769 .006

IVTreatCond 6.416 1 6.416 2.173 .143

CovAge 105.161 1 105.161 35.619 .000

IVTreatCond*CovAge 15.876 1 15.876 5.377 .022

Error 324.761 110 2.952

Total 3,855.000 114

Corrected total 493.939 113

aR-squared¼ .343 (adjusted R-squared¼ .325)
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the ANCOVA to determine the effects of the substance abuse

treatment conditions (standard care and standard care plus

contingency management) on longest duration of abstinence

with age as a covariate.

Analysis of Covariance of the Omnibus H0

ANCOVA IBM SPSS Commands

1. Click Analyze. click General Linear Model. click Univariate. click
over LDA under Dependent Variable, TreatmentCondition under Fixed
Factor(s), and Age over to Covariate(s).

2. Click on the Plots button. click TreatmentCondition to Horizontal Axis.
click the Add button. click Continue.

3. Click on the Options button. click (Overall) and TreatmentCondition to
Display Means for. Select Compare Main Effects. Select LSD(none).

4. Click on the boxes for Descriptive statistics, Estimates of effect size,
Observed power, and Homogeneity tests. the Significance level should
be .01. click on Continue. click OK.

5. Save generated output as ANCOVA with Age Results.

The results of this analysis provide us with information to test the omnibus
null hypothesis of the study:

H0: There will be no significant mean differences in longest duration of
abstinence across the two substance abuse treatment conditions (standard
care and standard care plus contingency management) with a covariate
adjustment for age.

H0: μSCadj ¼ μSCþCMadj

The results of the ANCOVA are presented next. Additionally, interpretations
are provided for the magnitude of treatment effects (effect sizes), post hoc power,
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post hoc multiple comparisons of means, and confidence intervals for the mean
differences.

ANCOVA Results

Previously, homogeneity of variance was assessed across groups for the dependent
variable and covariate separately (see Table 10.6) and the assumption was met.
Table 10.8 shows the test of homogeneity of variance of the dependent vari-
able when the independent variable and covariate are combined. The significance
value of .506 is greater than the α¼ .01, so we retain the null hypothesis that the
variances are equal and the assumption is met.

In the ANCOVA output labeled Tests of Between-Subjects Effects you will
see the name of the independent variable (IVTreatmentCondition) under the
heading Source that we created when the data were entered (see Table 10.9).
We will be using the information in this row to make a decision about rejecting
the null hypothesis.

The ANCOVA statistic is in the F column (F¼ 8.332) and the F-statistic is
significant at the p¼ .005 probability level from the Sig. column (see Table 10.9).
The criterion that we selected to make a decision about rejecting the null hypothesis
was α¼ .01. The significant statistic probability of .005 is less than α¼ .01, so the
decision is to reject the null hypothesis ( p, .01). Hence, there is a significant dif-
ference among the two group (standard care and standard care plus contingency
management) means on longest duration of abstinence when age is adjusted as the
covariate.We can write this finding of the omnibus hypothesis as F(1, 111)¼ 8.332,
p, .01.

TABLE 10.8 Test of Homogeneity of Variance of DVLDA Including
CovAge and IVTreatmentCondition

Levene’s Test of Equality of Error Variancesa

Dependent Variable: DVLDA

F df1 df2 Sig.

.445 1 112 .506

Tests the null hypothesis that the error variance of the dependent variable is equal across

groups.
aDesign: Intercept1CovAge1 IVTreatmentCondition
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TABLE 10.9 ANCOVA Results

Tests of Between-Subjects Effects

Dependent Variable: DVLDA

Source
Type III Sum
of Squares df

Mean
Square F Sig.

Partial
Eta

Squared
Noncent.
Parameter

Observed
Powera

Corrected model 153.302b 2 76.651 24.978 .000 .310 49.955 1.000

Intercept 23.973 1 23.973 7.812 .006 .066 7.812 .570

CovAge 106.556 1 106.556 34.722 .000 .238 34.722 .999

IVTreatmentCondition 25.570 1 25.570 8.332 .005 .070 8.332 .605

Error 340.637 111 3.069

Total 3,855.000 114

Corrected total 493.939 113

aComputed using alpha¼ .01
bR-squared¼ .310 (adjusted R-squared¼ .298)
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You can see in Table 10.8 that the covarate age was significant (p¼ .000),
indicating the two groups did differ in the average age. Thus, it was a good
decision to use age as a covariate.

Estimated Marginal Means

The purpose of the ANCOVA was to control the effects of an extraneous vari-
able, age, interacting differentially with the IV (Treatment Condition) on the DV
(Longest Duration of Abstinence). In other words, what would the values of
means of the DV be if the participants in the two condition groups (SC and
SC1CM) had not differed on the covariate (age)? ANCOVA partials out the
effects of the covariate (age) on the DV (Longest Duration of Abstinence) on
the means produced by the SC and the SC1CM conditions. These adjusted
means are then tested for significant differences. These adjusted (estimated) means
are presented in the output (see Table 10.10). The estimated (adjusted)mean of the
DV for the SC condition group is M¼ 4.95, and before the mean was adjusted
for the covariate (age) it wasM¼ 4.79 (see Table 10.2 earlier in the chapter). The
estimated mean of the DV for the SC1CM condition group is M¼ 5.91, com-
pared to the unadjusted mean of M¼ 6.07.

The plot of the two estimated marginal means is depicted in Figure 10.5. You
can visually see the higher adjusted mean representing longer duration in treat-
ment for the participants who received the SC1CM compared to the CM
condition. We discovered previously that this difference is significant.

The mean comparisons support the directional alternative hypothesis that
standard care plus contingency management treatment condition significantly
increase the number of weeks of abstinence.

TABLE 10.10 Estimated Marginal Means

Estimates

Dependent Variable: DVLDA

99% Confidence Interval

IVTreatmentCondition Mean Std. Error Lower Bound Upper Bound

SC 4.950a .234 4.337 5.562

SC1CM 5.910a .234 5.298 6.522

aCovariates appearing in the model are evaluated at the following values: COVAge¼33.29.
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HYPOTHESIS TESTING STEP 6: MAKE DECISION
REGARDING THE H0 AND INTERPRET POST HOC EFFECT

SIZES AND CONFIDENCE INTERVALS

We conclude there are mean differences in longest duration of abstinence across
the two condition groups with age as a covariate. We next assess the magnitude of
treatment effect, post hoc power, and the .99 confidence interval of the mean
difference.

Magnitude of Treatment Effect—Post Hoc Effect Size

In theTests of Between-Subject Effects table of the ANCOVA results output (seeTable
10.9), the partial eta-squared value (η2¼ .070) is located on the Condition line next
to the Sig. value. We will interpret the η2¼ .070 by converting the fraction to a
percentage and reporting that approximately 7 percent of the change in the

FIGURE 10.5 Profile Plot

IVTreatmentCondition

Estimated Marginal Means of DVLDA
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Covariates appearing in the model are evaluated at the following values: COVAge � 33.29.
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dependent variable (longest duration of abstinence) can be attributed to the inde-
pendent variable (substance abuse treatment program) when age scores are used as
the covariate. The η2¼ .070 has a medium strength effect according to Cohen’s
convention where approximately 1 percent to 6 percent is small,.6 percent to 14
percent is medium, and .14 percent is large. The substance abuse treatment pro-
gram has a significant magnitude of treatment effect on the duration of abstinence.

Post Hoc Power

You remember that we estimated the probability of correctly rejecting a false null
hypothesis prior to conducting the study resulting in an a priori power¼ .80. The
actual power after the study was conducted is reported in the Between-Subjects
Effects output under Observed Power for Condition (see Table 10.9). The post-hoc
power is .605, indicating that given a post hoc effect size of .070, α .01, and a
sample size of 114, the probability was approximately 60.5 times in 100 that we
would correctly reject a false null hypothesis. The lower than desired post hoc
power of .605 was likely due to overestimating the a priori effect size at η2¼ .11.
The post hoc effect size was η2¼ .070. Fortunately, we were still able to identify a
significant difference in longest duration of abstinence resulting from comparing
the treatment effects of standard care to the treatment effects of standard care plus
contingency management.

Confidence Intervals of Mean Differences

The probability used for the confidence interval is .99 since α¼ .01 in this
study. The CI.99 was found by using the least significant difference (LSD) pairwise
comparisons output (see Table 10.11). The pairwise mean comparisons do not
need to be interpreted since there are only two groups (SC and SC1CM) and we
already know that the two means are different from the ANCOVA analysis.

The .99 CI interval for the means difference in longest duration of abstinence
for comparing the standard care and standard care plus contingency management
conditions is (.088)2 (1.832). The probability is .99 that this interval will
include the true mean difference between the population means of longest
duration of abstinence between the standard care and standard care plus con-
tingency management conditions. It is important to note that the upper and
lower limits of the .99 interval are going in the same direction, indicating an
interval that reflects a gain in duration of abstinence.
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TABLE 10.11 Confidence Interval (.99) for the Mean Difference between SC and SC1CM

Pairwise Comparisons

Dependent Variable: DVLDA

99% Confidence
Interval for Differencea

(I) IVTreatmentCondition (J) IVTreatmentCondition
Mean Difference

(I2J)
Std.
Error Sig.a

Lower
Bound

Upper
Bound

SC SC1CM 2.960* .333 .005 21.832 2.088

SC1CM SC .960* .333 .005 .088 1.832

*Based on estimated marginal means.
aThe mean difference is significant at the .01 level.

Adjustment for multiple comparisons: least significant difference (equivalent to no adjustments).
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PROGRESS REVIEW

1. The omnibus H0: μSCadj¼μSC1CMadj was rejected (p, .01),

indicating the existence of significant mean differences on

the dependent variable (LDA).

2. The overall magnitude of treatment effect of the independent

variable (substance abuse treatment condition) on the

dependent variable (longest duration of abstinence) was a

medium effect, η2¼ .070.

3. The post hoc power of .605 was smaller than the criterion of

.80, but we still found a significant effect.

4. The probability is .99 that this interval (.088)2 (1.832) will

include the true mean difference between the population

means of longest duration of abstinence between the stan-

dard care and standard care plus contingency management

conditions adjusted for age.

FORMULA ANCOVA CALCULATIONS OF THE
STUDY RESULTS

The calculation of the ANCOVA problem data are presented in steps following
the format of Lowry (2011).

Step 1: Calculations for the Dependent Variable LDA (Y)

The data for LDA (DV, Y) are presented by the groups SC and SC1CM. At the
end of the Table 10.12, the N, sums of scores, sums of scores squared, sums of
squares and means are provided by group and as totals. The summary statistics
will be used in calculating SSTotal, SSBetween, and SSWithin. These SS values will be
used in later analyses.
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TABLE 10.12 Data and Summary Statistics
for LDALDA DV (Y)

SC SC1CM

3 7

2 2

5 4

2 6

3 6

6 5

1 4

4 8

1 7

3 4

1 6

4 3

2 5

5 9

6 3

8 6

3 4

5 3

2 7

8 7

3 5

6 8

7 8

5 5

5 9

7 7

7 6

6 4

5 5

4 7

6 6

7 7

6 3

4 3

6 2

5 6

7 7

5 6

6 3

3 8
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SSTotal ¼ P ðXij �MTot:Þ2

¼ ð3� 5:43Þ2 þ ð2� 5:43Þ2?ð6� 5:43Þ2 þ ð7� 5:43Þ2

¼ 493:94

SSBetween ¼ n1ðM1 �Mtot:Þ2 þ n2ðM2 �Mtot:Þ2

¼ 57ð4:79� 5:43Þ2 þ 57ð6:07� 5:43Þ2

¼ 57ð�:64Þ2 þ 57ð:64Þ2

¼ 57ð:410Þ þ 57ð:410Þ
¼ 23:37þ 23:37

¼ 46:74

SC SC1CM

6 9

5 5

4 4

5 5

4 9

9 8

6 10

4 4

6 9

4 7

7 6

4 7

6 9

3 9

6 11

4 6

6 7

Totals
N 57 57 114

ΣYi 273 346 619

ΣY 2
i 1,499 2,356 3,855

SS 215 279 494

M 4.79 6.07 5.43
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SSWithin ¼ SSTotal � SSBetween
¼ 493:94� 46:74

¼ 447:20

Step 2: Calculations for the Covariate Age (X)

The data for Age (covariate, X) are presented in table 10.13 by groups SC and
SC1CM. At the end of the table the N, sums of scores, sums of scores squared,
sums of squares, and means are provided by group and as totals. The summary
statistics are used in calculating SSTotal, SSBetween, and SSWithin, in later analyses.

TABLE 10.13 Data and Summary Statistics for Age

Age COV (X)

SC SC1CM

19 36

20 33

20 23

21 53

21 41

21 32

22 37

22 29

22 40

23 31

24 25

24 26

24 42

24 33

24 23

24 26

25 26

25 22

26 43

27 41

27 25

27 45

27 35

28 24

29 53
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Age COV (X)

SC SC1CM

30 43

30 44

31 23

31 41

32 34

32 37

33 40

33 39

33 22

33 25

33 34

34 32

34 31

34 27

35 37

38 35

38 31

39 29

39 30

40 41

40 47

40 42

40 20

41 33

41 27

43 27

43 45

44 42

45 50

49 59

53 27

57 43

Totals

N 57 57

ΣXi 1,814 1,981 3,795

ΣX2
i 62,106 73,373 135,479

SS 4,499 4,647 9,146

M 31.825 34.754 33.289
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SSTotal ¼P ðXij �MTot:Þ2
¼ ð19� 33:29Þ2 þ ð20� 33:29Þ2ð27� 33:29Þ2 þ ð43� 33:29Þ2
¼ 9,145:45

SSBetween ¼ n1ðM1 �Mtot:Þ2 þ n2ðM2 �Mtot:Þ2
¼ 57ð31:825� 33:289Þ2 þ 57ð34:754� 33:289Þ2
¼ 57ð�1:464Þ2 þ 57ð1:465Þ2
¼ 57ð2:143Þ þ 57ð2:146Þ
¼ 122:151þ 122:322

¼ 244:473

SSWithin ¼ SSTotal � SSBetween
¼ 9,145:45� 244:47

¼ 8,900:98

Step 3: Calculations of Covariance of Age3LDA

Next, the covariance calculations of the covariate (Age) times the dependent
variable (LDA) are conducted. These analyses result in sums of the cross product
of Age and LDA for SC and SC1CM groups and a total. Then, the sums of
squares total and within of the covariance are calculated.

SC SC1CM

Age LDA Age LDA

19 3 36 7

20 2 33 2

20 5 23 4

21 2 53 6

21 3 41 6

21 6 32 5

22 1 37 4

22 4 29 8

22 1 40 7

23 3 31 4

24 1 25 6

24 4 26 3
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SC SC1CM

Age LDA Age LDA

24 2 42 5

24 5 33 9

24 6 23 3

24 8 26 6

25 3 26 4

25 5 22 3

26 2 43 7

27 8 41 7

27 3 25 5

27 6 45 8

27 7 35 8

28 5 24 5

29 5 53 9

30 7 43 7

30 7 44 6

31 6 23 4

31 5 41 5

32 4 34 7

32 6 37 6

33 7 40 7

33 6 39 3

33 4 22 3

33 6 25 2

33 5 34 6

34 7 32 7

34 5 31 6

34 6 27 3

35 3 37 8

38 6 35 9

38 5 31 5

39 4 29 4

39 5 30 5

40 4 41 9

40 9 47 8

40 6 42 10

40 4 20 4

41 6 33 9

41 4 27 7

43 7 27 6

(Continued)

c10 19 June 2012; 9:0:53

ANALYSIS OF COVARIANCE � 333



SC SC1CM

Age LDA Age LDA

43 4 45 7

44 6 42 9

45 3 50 9

49 6 59 11

53 4 27 6

57 6 43 7

SC SCþCM TotalPðXageYLDAÞ ¼ 8,979
PðXageYLDAÞ ¼ 12,708

PðXageYLDATotÞ ¼ 21,687P
Xage ¼ 1,814

P
Xage ¼ 1,981

P
XageTot ¼ 3,795P

YLDA ¼ 273
P

YLDA ¼ 346
P

YLDATot ¼ 619

SSCOVTot ¼ PðXageYLDATotÞ �
ðPXageTotÞð

P
YLDATotÞ

Ntot

¼ 21,687� ð3,795Þð619Þ
114

¼ 21,687� 2,349,105=114

¼ 21,687� 20,606

¼ 1,081

SSCOVWithinðgroupÞ ¼ PðXageYLDAÞ �
ðPXageÞð

P
YLDAÞ

n

SCGroup ¼ 8,979� ð1,814Þð273Þ=57
¼ 8,979� 495,222=57

¼ 8,979� 8,688

¼ 291
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SCþ CMGroup ¼ 12,708� ð1,981Þð346Þ=57
¼ 12,708� 685,426=57

¼ 12,708� 12,025

¼ 683

SSCOVWithin ¼ SSCOVWithinðSCÞ þ SSCOVWithinðSCþ CMÞ
¼ 291þ 683

¼ 974

Step 4: Adjustment of LDA (DV, Y) Based on the Covariate
of Age (X)

We are conducting calculations to remove (or adjust) the effects of the covariate
(Age) on the dependent variable (LDA). We will use previous calculations to
conduct the adjustments so they are summarized in Table 10.14 for easy access.

Adjustment of SSTotal(Y)

Adjusted SSTotalðYÞ ¼ SSTotalðYÞ � ðSSCOVTotalÞ2=SSTotalðXÞ
¼ 493:94� ð1,081Þ2=9,145:45Þ
¼ 493:94� 1,168,561=9,145:45

¼ 493:94� 127:78

¼ 366:16

Adjusted SSWithinðYÞ ¼ SSWithinðYÞ � ðSSCOVWithinÞ2=SSWithinðXÞ

¼ 447:20� ð974Þ2=8,900:98
¼ 447:20� 948,676=8,900:98

¼ 447:20� 106:58

¼ 340:62

TABLE 10.14 Summary of Previous Calculations

Age (X) LDA (Y) Covariance

SSTotal 9,145.45 493.94 1,081

SSWithin 8,900.98 447.20 974

SSBetween 46.74
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Adjustment of SSBetweenðYÞ ¼ adj
�
SSTotalðYÞ

�� adj
�
SSWithinðgÞðYÞ

�
¼ 366:16� 340:62

¼ 25:54

The summary table of the ANCOVA results is presented in Table 10.15.
Figure 10.6 shows a visual representation of the findings. A critical value

(CV) is obtained using an online calculator.

Go to www.danielsoper.com. select Statistics Calculators. select F-Dis-
tribution. select Critical F-value Calculator. type in 1 next to
Degrees of freedom 1:. type 111 next to Degrees of freedom 2:.
type 0.01 beside Probability level:. click on Calculate!

The F critical value is 6.86884699, rounded to 6.87. We place the F critical
value on the abscissa (base of the curve) of the F-distribution curve. Then, we
place the obtained omnibus ANOVA value of F¼ 8.3 on the curve. The area of
rejection begins on the abscissa at the CV, and any obtained F to the right of the

TABLE 10.15 Summary of ANCOVA Results

Source SS df MS F P

Adjusted means (Between) 25.54 1 25.54 8.3 P, .01

Adjusted error (Within) 340.62 111 3.07

Adjusted total 366.16

FIGURE 10.6 Hypothesis Testing Graph ANCOVA

0

Area of Retention

Fcrit. � 6.87 Fobt. � 8.3
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CV informs us to reject the null hypothesis. Our Fobtained¼ 8.3 falls in the area of
rejection to the right of the CV¼ 6.87, so we reject the H0, concluding that if the
null hypothesis is true we would have obtained results like these less than 1
percent of the time.

Step 5: Calculation of Adjusted Means

BWithin ¼ SSCOVWithin=SSWithinðAgeÞ

¼ 974=8,900:98

¼ :11

MLDASC Adjusted ¼ MLDASC þ ðBWithinÞðMAgeSC � MAgeTotÞ
¼ 4:79þ ð:11Þð31:82� 33:29Þ
¼ 4:79þ ð:11Þð1:47 absolute valueÞ
¼ 4:79þ ð:16Þ
¼ 4:95

MLDASCþCM Adjusted ¼ MLDASCþCM � ðBWithinÞðMAgeSCþCM �MAgeTotÞ
¼ 6:07� ð:11Þð34:75� 33:29Þ
¼ 6:07� ð:11Þð1:46Þ
¼ 6:07� ð:16Þ
¼ 5:91

MAge MLDA MLDA Adjusted

SC 31.82 4.79 4.95

SC1CM 34.75 6.07 5.91

Total 33.29 5.43
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Adjustment of SSTotal(Y) Correlation r

rTot: ¼ SSCOVTot

sqrtð½SSTotðAgeÞ�½SSTotðLDAÞ�Þ

¼ 1,081
sqrtð½9,145�½494�Þ

¼ 1,081=sqrtð4,517,630Þ
¼ 1,081=2,125

¼ :509

ðrTotÞ2 ¼ ð:509Þ2 ¼ :259

Adjustment of SSWithin(Y) Correlation (r)

rWithinðLDAÞ ¼
SSCOVWithinðLDAÞ

sqrt
�
½SSWithinðAgeÞ�½SSWithinðLDAÞ�

�

¼ 974
sqrtð½8,900:98�½447:20�Þ

¼ 974=sqrtð3,980,518:26Þ
¼ 974=1,995:12

¼ :488

ðrWithinÞ2 ¼ ð:488Þ2 ¼ :238

Post Hoc Effect Size

η2P ¼ Treatment ðConditionÞ sum of squares ðSSÞ
Treatment SSþ Error SS

¼ 25:570
25:570þ 340:637

¼ 25:570
366:207

η2P ¼ :07
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ANCOVA STUDY RESULTS

The purpose of this study was to determine if abstinence from using drugs is
increased when a contingency management program is added to standard care with
age as a covariate. The independent variable is a drug treatment program having
two conditions: standard care, and standard care plus contingency management.
The dependent variable is the longest duration of abstinence (LDA), operationally
defined as the number of weeks of longest duration of objectively verified con-
tinuous abstinence. The legally documented age of the participants is used as the
covariate in the study.

Data were collected from a sample of 114 substance abusers who were ran-
domly assigned to receive the standard care condition (n¼ 57) or the standard
condition plus contingency management condition (n¼ 57). The data were
assessed for data accuracy and missing data. Also, the data were screened for
underlying assumptions and were found to meet normality, homogeneity of var-
iance, independence, and homogeneity of regression requirements.

The a priori power analysis was conducted using an average estimated effect
size (η2¼ .11) from previous studies, α¼ .01, N¼ 114, and a power criterion of
.80. The analysis showed that we should be confident in correctly rejecting a false
H0 in favor of the alternative hypothesis in our study.

The omnibus null hypothesis was tested, and there was a significant differ-
ence in LDA among participants in the SC condition compared to those in the
SC1CM condition with age used as a covariate, F(1, 111)¼ 8.332, p, .01.
The participants in the SC1CM condition showed a higher number of days of
abstinence (Madj.¼ 5.91, SE¼ .234) than did participants in the standard con-
dition (Madj.¼ 4.95, SE¼ .234).

The post hoc effect size was η2¼ .07. The CI.99 of the mean difference was
(.088)2 (1.832), indicating that the probability is .99 that this interval will
include the true mean difference between the population means of longest
duration of abstinence between the standard care and standard care plus con-
tingency management conditions adjusted for age.

In conclusion, a longer duration in abstinence from drugs was found when
contingency management treatment was added to the standard care compared to
the results of standard care only. Moreover, this finding is contingent on age
being used as a covariate.
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SUMMARY

An ANCOVA was conducted for this research problem. The independent variable
(substance abuse treatment condition) included two levels: standard care and
standard care plus contingency management. The dependent variable was the
longest duration of abstinence and the covariate was the age of participants.
Research questions and hypotheses were developed that incorporated independent,
dependent, and covariate variables. We established a criterion alpha level consid-
ering Type I and Type II errors. An a priori power analysis was conducted to assess
the dependability of the study.

Data were entered for computer analyses using the IBM SPSS statistical
program (see Table 10.16). Data diagnostics were conducted to ensure we met
univariate underlying assumptions of normality, homogeneity of variance,
independence of scores, and homogeneity of regression (slope).

TABLE 10.16 Analysis of Covariance Data

ID# IVTreatCond COVAge DVLDA

1 1 19 3

2 1 20 2

3 1 20 5

4 1 21 2

5 1 21 3

6 1 21 6

7 1 22 1

8 1 22 4

9 1 22 1

10 1 23 3

11 1 24 1

12 1 24 4

13 1 24 2

14 1 24 5

15 1 24 6

16 1 24 8

17 1 25 3

18 1 25 5

19 1 26 2

20 1 27 8

21 1 27 3

22 1 27 6
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ID# IVTreatCond COVAge DVLDA

23 1 27 7

24 1 28 5

25 1 29 5

26 1 30 7

27 1 30 7

28 1 31 6

29 1 31 5

30 1 32 4

31 1 32 6

32 1 33 7

33 1 33 6

34 1 33 4

35 1 33 6

36 1 33 5

37 1 34 7

38 1 34 5

39 1 34 6

40 1 35 3

41 1 38 6

42 1 38 5

43 1 39 4

44 1 39 5

45 1 40 4

46 1 40 9

47 1 40 6

48 1 40 4

49 1 41 6

50 1 41 4

51 1 43 7

52 1 43 4

53 1 44 6

54 1 45 3

55 1 49 6

56 1 53 4

57 1 57 6

58 2 36 7

59 2 33 2

60 2 23 4

61 2 53 6

62 2 41 6

(Continued)
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TABLE 10.16 Analysis of Covariance Data (Continued)

ID# IVTreatCond COVAge DVLDA

63 2 32 5

64 2 37 4

65 2 29 8

66 2 40 7

67 2 31 4

68 2 25 6

69 2 26 3

70 2 42 5

71 2 33 9

72 2 23 3

73 2 26 6

74 2 26 4

75 2 22 3

76 2 43 7

77 2 41 7

78 2 25 5

79 2 45 8

80 2 35 8

81 2 24 5

82 2 53 9

83 2 43 7

84 2 44 6

85 2 23 4

86 2 41 5

87 2 34 7

88 2 37 6

89 2 40 7

90 2 39 3

91 2 22 3

92 2 25 2

93 2 34 6

94 2 32 7

95 2 31 6

96 2 27 3

97 2 37 8

98 2 35 9

99 2 31 5

100 2 29 4

101 2 30 5

102 2 41 9

103 2 47 8
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An ANCOVA analysis was conducted by hand and using IBM SPSS com-
puter analysis. Post hoc effect size, power, and .99 confidence interval were
calculated. Finally, a summary of the results was presented.

PROBLEM ASSIGNMENT

The steps involved in conducting an ANCOVA using IBM SPSS have been
presented in this chapter. Now it is your turn to work independently through the
steps of the hypothesis-testing process related to an ANCOVA using IBM SPSS.
Go to the companion website and you will find a new ANCOVA research
problem and data set along with a worksheet to complete. Use the problem
presented in this chapter as a guide so you can complete the assignment. Your
instructor will evaluate your completed worksheet when it is finished.

KEY TERMS

ANCOVA

continuous scale

covariates

discrete-nominal

error term

exploratory data analysis

ID# IVTreatCond COVAge DVLDA

104 2 42 10

105 2 20 4

106 2 33 9

107 2 27 7

108 2 27 6

109 2 45 7

110 2 42 9

111 2 50 9

112 2 59 11

113 2 27 6

114 2 43 7

Treatment conditions:

1¼Standard care

2¼Standard care plus contingency management
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extraneous variable

homogeneity of regression (slope)

G*Power 3.1

nominal-scaled

population mean

regression analysis

sample mean

two-group posttest-only randomized

experimental design with covariate

variance
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Chapter 11

RANDOMIZED CONTROL

GROUP AND REPEATED-

TREATMENT DESIGNS AND

NONPARAMETICS

LEARNING OBJECTIVES

� Demonstrate how to develop research questions and hypoth-
eses as they relate to a research problem incorporating inde-
pendent and dependent variables studies using nonparametric
statistics.

� Conduct data diagnostics to assess for parametric under-
lying assumptions and show how, when they are not met,
nonparametric statistics provide alternatives.

� Execute a Kruskal-Wallis test for independent samples,Mann-
Whitney U test of two independent samples, Friedman’s test
for correlated samples, and Wilcoxon’s test for two correlated
samples.

� Interpret post hoc analyses and understand the study
findings combining the various analyses.
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The use of four commonly used nonparametric statistics as alternatives to
their parametric counterparts is covered in this chapter. Two research
problem data sets are used to understand the application of nonparametric

statistics. Kruskal-Wallis and Mann-Whitney U statistics will be used in the first
data set and another data set will be used to illustrate the analyses of the
Friedman and Wilcoxon tests.

RESEARCH PROBLEM

Multiple sclerosis (MS) is a central nervous system disease that affects the brain,
spinal cord, and optic nerves (National Multiple Sclerosis Society, 2012). Chronic
low back pain is one of the symptoms that individuals with MS can experience. In
addition to medications to control pain, there are nonpharmacological methods
used to manage pain. One method being tested by researchers is called transcuta-
neous electrical nerve stimulation (TENS) (Warke, Al-Smadi, Baxter, Walsh, &
Lowe-Strong, 2006). TENS is administered as an electrical current applied to the
participant’s lumbar spine using a lumbar belt with self-adhering electrodes. Par-
ticipants are trained on how andwhen to self-administer the TENS. This simulated
study problem is designed to assess the effects of TENS on chronic low-back pain of
persons with multiple sclerosis using the study by Warke et al. (2006) as a guide.

Persons with multiple sclerosis were recruited from an MS support group
organization in a large city in the United States. Sixty persons who have multiple
sclerosis comprise the sample. The average age of participants is 42.30 (SD ¼
4.20). There are 48 females (80 percent) and 12 males (20 percent). The par-
ticipants have experienced low back pain over 11 years.

The 60 participants are randomly assigned to three condition groups.
The participants in the first condition receive a low electric stimulation while the
second group receives a placebo and the third group receives a high electric
stimulation. The outcome variable is pain improvement as measured by the
McGill Pain Questionnaire (MPQ).

STUDY VARIABLES

The independent variable is electric stimulation condition and has three condi-
tions: (1) low electric stimulation, (2) placebo, and (3) high electric stimulation.
The participants used a lumbar belt with neurostimulation electrodes positioned
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to emit a current to their lumbar spine region. The participants were trained in
the use of the lumbar belt and how to self-administer their allotted electric
stimulation level six days a week for 45 minutes at home over 24 weeks. The
placebo condition participants received everything that the stimulation condition
participants received except for the real electric stimulation.

The dependent variable is pain improvement, and it is operationally defined as
scores on the McGill Pain Questionnaire (MPQ). An MPQ score is derived from
patients rating their pain based on its location, what it feels like, pain change over time,
and strength of pain from mild to excruciating. MPQ scores were obtained before
treatment began. Improvement scores were recorded following treatment. In this
study example, higher improvement scores translate to greater pain improvement.

RESEARCH DESIGN

The research design used for this research example is a randomized pretest-posttest
control group design (Shadish, Cook, & Campbell, 2002) (see Figure 11.1). Each
line in the diagram represents a group (three groups), and the R symbolizes
random assignment to each group condition. The observations (O) before the
treatment conditions represent a pretest on pain improvement using MPQ scores.
The conditions by groups are represented by X1 (low stimulation condition), C
(placebo), and X2 (high stimulation condition). The observations (O) following
the treatment conditions represent the posttest pain level scores on the MPQ.

This design has utility for several statistical analyses. The pretest scores can be
analyzed for differences (between-design) in pain improvement across the treatment
conditions before the study is implemented. If there are differences in pain
improvement across the groups, the pretest pain level scores can be used as a covariate
to cancel out differences when comparing the posttest scores on pain improvement.
Pretest and posttest scores can be analyzed for gains using a repeated-measures
(within-design) statistic. Posttest scores can be analyzed for differences in pain
improvement across the treatment conditions following treatment (between-design).

FIGURE 11.1 Randomized Pretest-
Posttest Control Group Design

R O X1LowElectStim O

R O C2Placebo O

R O X2HighElecStim O
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Statistical Analyses

We begin with an analysis of the posttest pain improvement as measured by the
MPQ scores to see if there were any differential treatment effects across the three
conditions. The pain improvement scores were analyzed at the pretest and no
significant differences were found. So the condition groups are starting out rel-
atively equal on pain improvement before the treatment begins. We will find that
the dependent variable does not meet the underlying assumptions of normality,
so our choice will be to use a nonparametric Kruskal-Wallis ANOVA with a post
hoc analysis using a Mann-Whitney U (MWU) statistic.

Parametric statistics use sample statistics to estimate population parameters
requiring underlying assumptions that include normality and homogeneity of
variance of the dependent variable from which the sample was drawn. Nonpara-
metric statistics do not have the same stringent assumptions (Siegel, 1956). Salsburg
(2001) says that a nonparametric statistic compares “the observed scatter of data
with what might have been expected from purely random scatter” (p. 163).

Siegel (1956) identified several advantages of using nonparametric statistics.
Nonparametrics use either exact probability or excellent approximations for
large samples. Thus, the accuracy of probability statements does not rely on
the shape of the population. When the sample size is quite small, say N ¼ 6,
nonparametrics are most effective. Nonparametric statistics can be used for
dependent variable scores that are inherently in the form of ranks (ordinal) or
categories (nominal).

PROGRESS REVIEW

1. The research problem that is focused on in this chapter relates

to comparing the effects of electric stimulation (independent

variable), operationally defined as a low electric stimulation

condition, a placebo condition, and a high electric stimulation

condition on pain improvement (dependent variable) among

persons with multiple sclerosis who have chronic back pain.
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2. Sixty participants were randomly assigned to the three

treatment conditions using a randomized pretest-posttest

control group design.

3. MPQ scores were obtained before treatment began. Improve-

ment scores were recorded following treatment. Higher

improvement scores indicate greater pain improvement.

4. A Kruskal-Wallis analysis of variance will be used to assess

differences in the pain improvement scores across the three

condition groups following treatment (posttest).

5. Next, the research question is stated and we begin complet-

ing the steps of the hypothesis-testing process.

STATING THE OMNIBUS (COMPREHENSIVE) RESEARCH
QUESTION

The research question is stated first and then the steps of the hypothesis-testing
process related to this research problem are presented.

Omnibus Research Question (RQ)

Will electric stimulation improve lower back pain when compared to a placebo
condition among persons who have multiple sclerosis?

HYPOTHESIS TESTING STEP 1: ESTABLISH THE
ALTERNATIVE (RESEARCH) HYPOTHESIS (Ha)

The omnibus (comprehensive) alternative hypothesis for the research problem is
stated next in both narrative and symbolic formats.

Omnibus Narrative Alternative Hypothesis (Ha)

Ha: The low and high electric stimulation conditions will produce
significantly more pain improvement when compared to the placebo
condition among persons who have multiple sclerosis.
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Symbolic Ha

Ha: μrankLowElectStim.μrankPlacebo , μrankHighElectStim

This is a directional alternative hypothesis since it is expected that either low
or high electric stimulation will improve low back pain when compare to the
placebo condition.

Jones and Tukey Method of Possible Conclusions

Once the results are obtained, we will make one of the following decisions: (1)
(μ1 � μ2) . 0, (μ1 � μ3) . 0, (μ2 � μ3) . 0; (2) (μ1 � μ2) , 0, (μ1 �
μ3) , 0, (μ2 � μ3) , 0; or (3) the sign (, 0 or . 0) of (μ1 � μ2), (μ1 � μ3),
(μ2 � μ3) is indefinite. In this study, we are expecting that (μrankLowElectStim �
μrankPlacebo) . 0 and that (μrankHighElectStim � μrankPlacebo) . 0, and that
(μrankLowElectStim � μrankHighElectStim) is indefinite.

HYPOTHESIS TESTING STEP 2: ESTABLISH THE NULL
HYPOTHESIS (H0)

The omnibus null hypothesis is stated in narrative and symbolic formats in the
second step of the hypothesis-testing process.

Omnibus Narrative Null Hypothesis (H0)

H0: There will be no significant mean rank differences in pain
improvement (MPQ scores) across the electric stimulation conditions
(low electric stimulation, placebo, high electric stimulation) following
treatment implementation.

Symbolic H0

H0: μrankLowElectStim ¼ μrankPlacebo¼ μrankHighElectStim

HYPOTHESIS TESTING STEP 3: DECIDE ON A RISK LEVEL
(ALPHA) OF REJECTING THE TRUE H0 CONSIDERING TYPE

I AND II ERRORS AND POWER

We will use our chosen α level and combine it with anticipated sample size
and an estimated (a priori) effect size, and determine if we have enough power
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(a priori) to conduct the study. Two power analyses for this problem will be
conducted. The first will be for the comparison of the low electric stimulation
condition to the placebo and the second will be comparing the high electric
stimulation condition to the placebo.

Selecting Alpha (α) Considering Type I and Type II Errors

Since there have been previous studies and we are repeating their procedures, we
will use a more strict alpha level of .01 to increase the probability of not making a
Type I error, which is rejecting a true null. We will have more confidence that the
low and high electric stimulation conditions are more effective in improving pain
when compared to a placebo condition.

A Priori Power Analysis

We are going to conduct two a priori power analyses to make sure that our planned
alpha, sample size, and estimated effect size will produce acceptable power prob-
abilities necessary to find significant differences in pairs of mean ranks if they exist.
The first power analysis will be conducted for the low electric stimulation compared
to the placebo condition. A similar previous study resulted in a posteffect size
of d ¼ .90, where .20 ¼ small, .50 ¼ medium, and .80 ¼ large (Cohen, 1988).
We are going to use G*Power 3.1 using our values of N ¼ 60, α ¼ .01, and the
estimated effect size of d ¼ 1.10. We are assessing whether we meet or exceed
our criterion of a power probability ¼ .80 for the low electric stimulation versus
placebo on pain improvement.

A Priori Power Analysis Using G*Power 3.1.2 for Low Electric Stimulation
versus Placebo

1. Open up the G*Power 3.1.2 program.

2. Select t tests under Test family . under Statistical test, select Means:
Wilcoxon-Mann-Whitney test (twogroups) . underTypeofpower analysis,
selectApriori: Compute required sample size - givenα, power, and effect size.

3. Select One beside Tail(s) . select Normal next to Parent distribution
. type in 1.10 next to Effect size d . beside α err prob, type 0.01 .

beside Power (1-β err prob), type 0.80 . type 1 next to Allocation ratio
N2/N1 . click on Calculate. The results are in Figure 11.2.
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The power analysis results show that we would need a total sample size ¼ 38
participants to reach a power $.80. Considering the combined elements in our
study of total sample size of both groups, n1 1 n2 ¼ 40, d ¼ 1.10, andα ¼ .01, a
power of .80 should be achieved. We are therefore confident that we will correctly
reject a false H0 and avoid making a Type II error for the low electric stimulation
condition compared to the placebo condition related to pain improvement. Next,
we will do a similar power analysis for the high electric stimulation condition

FIGURE 11.2 A Priori Power Analysis Results for Low Electric Stimulation
Versus Placebo
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compared to the placebo condition. The only thing that will change will be the
estimated effect size, which will be d ¼ 1.25 from a previous study. We already
know that the power value will be acceptable since we are increasing the estimated
effect size, but let’s run it anyway to see how sample size changes.

A Priori Power Analysis Using G*Power 3.1 for High Electric Stimulation
versus Placebo

1. Open up the G*Power 3.1 program.

2. Select t tests under Test family . under Statistical test, select Means:
Wilcoxon-Mann-Whitney test (twogroups) . underTypeofpower analysis,
selectApriori: Compute required sample size - givenα, power, and effect size.

3. Select One beside Tail(s) . select Normal next to Parent distribution
. type in 1.25 next to Effect size d . beside α err prob, type 0.01 .

beside Power (1-β err prob), type 0.80 . type 1 next to Allocation ratio
N2/N1 . click on Calculate. The results are in Figure 11.3.

The results show that we would need a total sample size ¼ 30 participants to
reach a power ¼ .801. The higher estimated effect size reduced the total parti-
cipants needed by eight participants compared to the previous analysis.

PROGRESS REVIEW

1. The research question and hypotheses were identified for the

study problem.

2. An α ¼ .01 was selected as the risk we are willing to take when

rejecting a true null hypothesis. We believe this alpha to be a

reasonable balancing point between the avoidance of making

eitheraType IorType II error for thegoalof thisparticular study.

3. We conducted two power analyses to assess the probability

of correctly rejecting a false null hypothesis. Both power

analyses, comparing the placebo condition to low electric

stimulation condition and then to the high electric stimulation

condition, resulted in power probabilities $.80.
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HYPOTHESIS TESTING STEP 4: CHOOSE APPROPRIATE
STATISTIC AND ITS SAMPLING DISTRIBUTION TO TEST THE

H0 ASSUMING H0 IS TRUE

We are using a Kruskal-Wallis (K-W) statistic to evaluate the omnibus null
hypothesis and will follow up using the Mann-Whitney U statistics to compare
paired-means rank differences.

FIGURE 11.3 A Priori Power Analysis Results for High Electric Stimulation
Versus Placebo
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We will discover during the data diagnostic process that the dependent
variable does not meet the normality assumption across conditions. The non-
parametric K-W one-way analysis of variance is appropriate to use as a
good alternative to a parametric one-way ANOVA statistic when the assumption
of normality is not met. Also, the K-W statistic is used when there are more than
two groups being compared and the groups are independent from each other.

HYPOTHESIS TESTING STEP 5: SELECT SAMPLE, COLLECT
DATA, SCREEN DATA, COMPUTE STATISTIC, AND

DETERMINE PROBABILITY ESTIMATES

The sample consisted of 60 persons with multiple sclerosis who experienced
chronic back pain. They were recruited from an MS support group organization
in a large metropolitan area. The sample was selected using purposive sampling of
typical instances (Shadish, Cook, & Campbell, 2002). The 60 participants were
randomly assigned equally to the three conditions of the independent variable:
(1) low electric stimulation, (2) placebo, and (3) high electric stimulation.

Study Data Diagnostics

Diagnostic assessments are conducted on the sample data after it has been col-
lected but before the primary study hypothesis is tested to check for data accu-
racy, missing data, univariate outliers, and underlying assumptions.

Accuracy of Data Entry

The original data were compared to the entered data by two members of the
research team. The accuracy of the data was corroborated by the two researchers.
Moreover, the variable scores were in the expected range and the means and
standard deviations appeared plausible.

Missing Data Analysis

There were no missing data in the original data set.
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Means, Standard Deviations, Variances, and Assessing for Univariate
Outliers IBM SPSS Commands

Enter the data from Table 11.1, K-W�MWU Data, into SPSS. Enter the data
into three columns just as it appears in the table.

1. Click on Data . Split File . click on circle beside Compare groups
. click on ElectricStimulation and click the arrow so that Electric-
Stimulation is under Groups Based on . click on OK and don’t save
command output. You have told the program to provide output by the
three groups (ElectricStimulation). You will need to change this command
back later.

2. Click on Analyze . Descriptive Statistics . Descriptives . click over
PainImprovement to Variable(s) . click on Save standardized values as
variables . click on Options and check Mean, Std. deviation, and Vari-
ance . click on OK . save the output as KW Descriptives.

The descriptive statistics table (Table 11.2) lists the sample size of each group
followed by the lowest (minimum) and highest (maximum) scores in each group.
Valid N is the number of participant scores that do not having missing data. The
average score (mean) of pain improvement for each group following electric
stimulation condition is provided. Measures of variability (standard deviation and
variance) designate how the scores in each condition distribution deviate from
their group mean. Looking at the descriptive statistics, it is evident that high-
frequency electric stimulation produced the most pain improvement
(M ¼ 28.900) followed by the low-frequency condition (M ¼ 28.700) and then
the placebo condition (M ¼ 26.750).

The standard values (z-scores) requested for the analysis to assess for uni-
variate outliers are produced in a new column on the Data View spreadsheet and
named ZPainImprovement. These values represent the z-scores corresponding
to the raw scores in each group. Since we used the “Split File” command, the
z-scores are produced separately for each of the three electric stimulation con-
ditions. The three highest positive and negative z-scores for each group are
reported in Table 11.3.
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TABLE 11.1 K-W-MWU Data

ID# PainImprovement ElectricStimulation*

1 28 1

2 38 1

3 26 1

4 29 1

5 26 1

6 27 1

7 29 1

8 29 1

9 28 1

10 27 1

11 30 1

12 31 1

13 27 1

14 28 1

15 32 1

16 26 1

17 25 1

18 29 1

19 30 1

20 29 1

21 26 2

22 19 2

23 30 2

24 25 2

25 27 2

26 26 2

27 29 2

28 28 2

29 26 2

30 27 2

31 28 2

32 27 2

33 27 2

34 28 2

35 26 2

36 29 2

37 26 2

38 25 2

39 29 2

40 27 2

(Continued)
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TABLE 11.2 Descriptive Statistics of Pain Improvement by Electric
Simulation Condition

Descriptive Statistics

ElectricStimulation N Minimum Maximum Mean
Std.

Deviation Variance

Low Elect

Stim

PainImprovement 20 25.00 38.00 28.700 2.83029 8.011

Valid N

(listwise)

20

Placebo PainImprovement 20 19.00 30.00 26.750 2.29129 5.250

Valid N

(listwise)

20

High

Elect Stim

PainImprovement 20 23.00 37.00 28.900 2.77014 7.674

Valid N

(listwise)

20

TABLE 11.1 K-W-MWU Data (Continued)

ID# PainImprovement ElectricStimulation*

41 29 3

42 28 3

43 27 3

44 37 3

45 31 3

46 26 3

47 23 3

48 26 3

49 30 3

50 29 3

51 30 3

52 31 3

53 27 3

54 28 3

55 28 3

56 29 3

57 30 3

58 28 3

59 30 3

60 31 3

*1 ¼ Low stimulation

2 ¼ Placebo

3 ¼ High stimulation
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One case (ID #22 ¼ �3.382) has an outlying pain improvement score (19)
that is significantly negatively skewed using the criterion of 63.29 (, .001, two-
tailed). Another case (ID #2) has a pain improvement score (38) as close as you
can get to be significantly positively skewed, but if we rounded to two places, the
z ¼ 3.286 would be 3.29 and meet our criteria. We have to consider ID #2 a
potential problem score, but we will look at additional information to help us
assess normality.

Reset Split File Command

At this point, remove the Split File filter. Data . Split File . click on the
Reset button and then click OK and click out of the output and don’t save it.

Assessing for Underlying Assumptions

Next we will assess whether the dependent variable (pain improvement) dis-
tributes itself normally in each of the three electric stimulation conditions.

Normality SPSS Commands

1. Analyze . Descriptive Statistics . Explore.

2. Click over dependent variable PainImprovement to Dependent List.

3. Click over independent variable (ElectricStimulation) to Factor List. Factor
is another term for independent variable.

TABLE 11.3 Three Highest 6z-Scores of Pain Improvement by Electric
Stimulation Condition

Condition
Highest

1z
Outlier?
. 63.29

Highest
2z

Outlier?
. 6 3.29

Low Elect Stim 3.286* Almost 21.307 No

Placebo 1.418 No 23.382 Yes

High Elect

Stim

2.924 No 22.130 No

*This number is rounded to three decimals.
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4. Do not change Display choices—leave on Both.

5. To the upper right of Display are three buttons. Click on Plots. Then,
select Normality plots with tests.

6. Under Spread vs. Level with Levene Test click on Untransformed.

7. Click on Continue.

8. Click on OK.

9. Save the output as KW-assumptions-screen.

Initially, we will obtain skewness and kurtosis information from the
Descriptives table of the output, which is reproduced in Table 11.4.

Skewness Assessment

We proceed by dividing the skewness statistic value by its Std. Error value to
obtain skewness z-scores. The skewness and standard error and their resulting
skewness z-scores are presented in Table 11.5.

The dependent variable (pain improvement) in two of the condition dis-
tributions (low electrical stimulation and placebo) significantly ( p , .001)
depart from normality. The low electrical stimulation distribution is positively
skewed with an extreme score to the right of the distribution as is evident in the
histogram (see Figure 11.4). In the univariate outlier analysis, the outlying pain
improvement score was 38, which was barely under the criterion of being a
significant positively skewed outlier. However, the low electrical stimulation
condition pain improvement clearly departs from normality when the skewness
z-score is calculated.

The placebo condition also shows a significant departure on skewness
(z ¼ �3.834) from normality in the negative direction on pain improvement
(see Figure 11.5). The extreme pain improvement score was 19, and it was found
to be a significantly univariate outlier in our earlier analysis.

The distribution of pain improvement scores did not depart significantly
from normality (zskew ¼ 1.578 , 63.29, p , .001) based on the skewness of
the distribution (see Figure 11.6).
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TABLE 11.4 Skewness, Kurtosis, and Standard Error Values by Group

Descriptives

ElectricStimulation Statistic
Std.
Error

PainImprovement Low

Elect Stim

Mean 28.7000 .63287

95% Confidence

Interval for Mean

Lower Bound 27.3754

Upper Bound 30.0246

5% Trimmed

Mean

28.3889

Median 28.5000

Variance 8.011

Std. Deviation 2.83029

Minimum 25.00

Maximum 38.00

Range 13.00

Interquartile

Range

2.75

Skewness 1.887 .512

Kurtosis 5.473 .992

Placebo Mean 26.7500 .51235

95% Confidence

Interval for Mean

Lower Bound 25.6776

Upper Bound 27.8224

5% Trimmed

Mean

27.0000

Median 27.0000

Variance 5.250

Std. Deviation 2.29129

Minimum 19.00

Maximum 30.00

Range 11.00

Interquartile

Range

2.00

Skewness 21.963 .512

Kurtosis 6.482 .992

High Elect

Stim

Mean 28.9000 .61942

95% Confidence

Interval for Mean

Lower Bound 27.6035

Upper Bound 30.1965

(Continued)
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Kurtosis Assessment

Below the skewness and standard error values in Table 11.4 are the kurtosis and
standard error values. Next, we divide the kurtosis statistic by its standard error
(values in Table 11.6) and compare the zkurtosis score resulting to 63.29 to see if
any condition distributions significantly depart from normality.

All three conditions produced significantly leptokurtic distributions that
significantly departed from normality (p , .001). The three distributions are
more narrow and peaked when compared to normally shaped distributions.

TABLE 11.5 Skewness z-Scores by Condition Group

Condition
Skewness z

(Stat./Std. Error 5 Z)
Skewness
Direction

Sig. Departure?
(. 63.29)

Low Elect Stim 1.887/.512 ¼ 3.686 Positive Yes

Placebo 21.963/.512 ¼ 23.834 Negative Yes

High Elect Stim .808/.512 ¼ 1.578 Positive No

TABLE 11.4 Skewness, Kurtosis, and Standard Error Values by Group
(Continued)

Descriptives

ElectricStimulation Statistic
Std.
Error

5% Trimmed

Mean

28.7778

Median 29.0000

Variance 7.674

Std. Deviation 2.77014

Minimum 23.00

Maximum 37.00

Range 14.00

Interquartile

Range

2.75

Skewness .808 .512

Kurtosis 3.516 .992
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Shapiro-Wilk Statistic Assessment

The S-W statistic information is found in the output under Tests of Normality
(see Table 11.7).We will be comparing the significance values to our alpha of .01
to see if the distributions of pain improvement resulting from the conditions
significantly depart from normality using the S-W statistics to corroborate pre-
vious evidence. We are testing H0: The Sample Distribution ¼ Normal.

The significance values of the low electric stimulation condition (p ¼ .003)
and the placebo condition (p ¼ .001) are both less than α ¼ .01, so we reject the
null hypothesis for both conditions. Their distributions on pain improvement
scores are significantly (p , .01) departing from normality. The distribution of
pain improvement scores created by the high electric stimulation condition is not
significant (p ¼ .059 . α ¼ .01). Thus, the distribution is considered normal
enough using the S-W statistic.

FIGURE 11.4 Histogram of the Low Electric Stimulation Condition on Pain
Improvement
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FIGURE 11.5 Histogram of the Placebo Condition on Pain Improvement
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FIGURE 11.6 Histogram of the High Electric Stimulation Condition on Pain
Improvement
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Normal Q-Q Plots Analysis

The normal Q-Q plots in Figures 11.7, 11.8, and 11.9 provide another look at
the three distributions. While the majority of the points are on or near the diagonal
line, there is one point on the low electric stimulation condition and one point on the
placebo condition that are a considerable distance from the line. These points rep-
resent the near outlier and the clear outlier that we discovered earlier. The evidence
from the Q-Q plots supports the lack of normality of the two distributions.

Summary of the Normality Evidence

The evidence is consistent that two of the distributions of pain improvement
scores do not meet the normality assumption. The low electric stimulation
condition distribution of pain improvement scores had: (1) an observed score
close to being an outlier, (2) a significant positive skew, (3) a significant lepto-
kurtic kurtosis, (4) a significant S-W statistic, and (5) a problematic Q-Q plot.

All of the same indicators of normality for the placebo condition distribution
of pain improvement scores were significant. Overall, the high electric condition
produced pain improvement scores that were normal enough.

TABLE 11.6 Kurtosis z-Scores by Condition on Pain Improvement Scores

Condition
Kurtosis z

(Stat./Std. Error 5 Z)
Kurtosis
Direction

Sig. Departure?
(. 63.29)

Low Elect Stim 5.473/.992 ¼ 5.517 Leptokurtic Yes

Placebo 6.482/.992 ¼ 6.534 Leptokurtic Yes

High Elect Stim 3.516/.992 ¼ 3.544 Leptokurtic Yes

TABLE 11.7 Shapiro-Wilk Statistics by Conditions

Tests of Normality

ElectricStimulation

Kolmogorov-Smirnova Shapiro-Wilk

Statistic df Sig. Statistic df Sig.

PainImprovement Low Elect Stim .208 20 .024 .839 20 .003

Placebo .222 20 .011 .816 20 .001

High Elect Stim .174 20 .113 .908 20 .059

aLilliefors significance correction.
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FIGURE 11.7 Normal Q-Q Plot of Pain Improvement Scores for the Low
Electric Stimulation Condition
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FIGURE 11.8 Normal Q-Q Plot of Pain Improvement Scores for the Pla-
cebo Condition
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Homogeneity of Variance

The extent that the variances and error variances across the pain improvement
scores by conditions are similar enough is assessed using Levene’s test. The results
are in the output results and reported in Table 11.8.

FIGURE 11.9 Normal Q-Q Plot of Pain Improvement Scores for the High
Electric Stimulation Condition
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TABLE 11.8 Levene’s Test of Homogeneity of Variance

Test of Homogeneity of Variance

Levene’s
Statistic df1 df2 Sig.

PainImprovement Based on mean .300 2 57 .742

Based on median .360 2 57 .699

Based on median and with

adjusted df

.360 2 56.081 .699

Based on trimmed mean .380 2 57 .686
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We are testing the null hypothesis that the variances and error variances
are equal across the conditions with the Levene’s test. The significance of
.742 based on the mean is more than α ¼ .01, so we fail to reject the null
hypothesis. We conclude that the variances and error variances are constant
enough across conditions to meet the underlying assumption of homogeneity
of variance.

Summary of Underlying Assumptions Findings

The underlying assumption of homogeneity of variance was met. However,
normality clearly was not met across the groups. The violation of the normality of
the distributions of pain improvement for two of the conditions is serious, and we
should not use a parametric statistic such as a one-way ANOVA. A good alter-
native statistic for us to use to analyze our data is a nonparametric statistic called
the Kruskal-Wallis (K-W) one-way analysis of variance.

PROGRESS REVIEW

1. Pain improvement data were collected on 60 persons with

multiple sclerosis who experienced chronic low back pain.

The sample members were randomly assigned to each of the

three conditions.

2. Data diagnostics showed that the dependent variable of pain

improvement as measured by the McGill Pain Questionnaire

(MPQ) did not meet the underlying assumption of normality

across the condition groups.

3. The decision was to use a nonparametric K-W analysis of

variance to test the null rather than using a parametric one-

way ANOVA since the data did not meet the underlying

assumption of normality.
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Kruskal-Wallis One-Way Analysis of Variance of the Omnibus H0

Kruskal-Wallis One-Way ANOVA SPSS Commands

1. Click Analyze . click Nonparametric Tests . click Legacy Dialogs .
click K Independent Samples . click over PainImprovement under Test
Variable List and ElectricStimulation under Grouping Variable . click on
Define Range . type a 1 beside Minimum and a 3 beside Maximum and
click Continue . click on Kruskal-Wallis H under Test Type.

2. Click on the Options button . check the Descriptive box and then
Continue and then OK.

3. Save generated output as KW Results.

The results of this analysis provide information to test the omnibus null
hypothesis of the study:

H0: There will be no significant mean rank differences in pain
improvement (MPQ scores) across the electric stimulation conditions
(low electric stimulation, placebo, high electric stimulation) following
treatment implementation.

H0: μrank1¼ μrank2¼ μrank3

The results of the K-W one-way ANOVA are presented next. Additionally,
interpretations are provided for the magnitude of treatment effects (effect sizes)
and multiple comparisons of means. We are making an a priori decision to
conduct two paired-means analyses comparing the low electric stimulation and
the high electric stimulation conditions to the placebo condition regardless of
whether the omnibus null hypothesis was significant.

K-W One-Way ANOVA Results

The table titledRanks presents themean ranks for each condition.The combinedpain
improvement scores in the three conditions are given a rank value representing their
rank within all 60 scores. Lower scores receive lower ranks and higher scores receive
higher ranks. Then the ranks of pain improvement scores are summed for each
condition and divided by the group sample size n ¼ 20; the results are themean ranks
for each condition group. Themean ranks for each group are presented inTable 11.9.
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Thehigh electric stimulationhas the highestmean rank (Mrank ¼ 36.73), followedby
the low electric stimulation (Mrank ¼ 33.35) and placebo (Mrank ¼ 21.43) condi-
tions. In this study, a higher mean rank translates to greater pain improvement.

The K-W statistic tests for a significant difference among the mean ranks of
pain improvement across the three conditions. Table 11.10 shows the results of
the K-W statistic.

The difference among themean ranks is not significant,χ2(N ¼ 60, df ¼ 2) ¼
8.663, p . .01. The asymptotic significance is p ¼ .013, which is greater than
α ¼ .01 sowe fail to reject the null hypothesis.Asymptotic significance is a probability
approximation of the parameters since it was not possible to obtain exact estimates
(Norusis, 2004). Asymptotic approximation is based on large sample modeling.

HYPOTHESIS TESTING STEP 6: MAKE DECISION
REGARDING THE H0 AND INTERPRET POST HOC EFFECT

SIZES

Wewere unable to reject the null hypothesis using the K-W statistic (p . .01).We
made a decision prior to the K-W analysis that wewould conduct two paired-means

TABLE 11.9 Mean Ranks of Pain Improvement by Conditions

Ranks

ElectricStimulation N Mean Rank

PainImprovement Low Elect Stim 20 33.35

Placebo 20 21.43

High Elect Stim 20 36.73

Total 60

TABLE 11.10 K-W Results

Test Statisticsa,b

PainImprovement

Chi-Square 8.663

df 2

Asymp. Sig. .013

aKruskal-Wallis Test.
bGrouping variable: ElectricStimulation.

c11 18 June 2012; 20:26:47

370 � CHAPT ER 11



analyses comparing the low electric stimulation and the high electric stimulation
conditions to the placebo condition regardless of whether the omnibus null
hypothesis was significant.

Post Hoc Multiple Comparisons of Means

The K-W analysis did not result in a significant difference in the three means
of the omnibus hypothesis using our criterion of α ¼ .01. The post hoc
mean comparisons are: (1) H0: μrank1LowElectStim ¼ μrank2Placebo, and (2) H0:
μrank2Placebo ¼ μrank3HighElectStim. We will be using the Mann-Whitney U
(MWU) statistic, which is a nonparametric alternative to the independent t-test.

When we have conducted the K-W analysis, we assessed an overall set
of mean ranks for differences. When we conduct a post hoc analysis of all paired
means, there is a family of conclusions possible among the three pairs of means. We
used an α ¼ .01 for the overall set of mean ranks for differences. When we
conduct two more comparisons with the Mann-Whitney U statistic, the Type I
errors for each of the three decisions combine to produce a higher level known as
inflated Type I error risk. Making a Type I error is rejecting a null hypothesis when
there is no difference. For example, we may reject H0: μrank1 ¼ μrank2 at α ¼ .01
when alpha has been inflated to .02 (two comparisons times α ¼ .01).

To protect against making a Type I error decision on the three mean rank pairs
being compared, wewill use an alpha correction known as aBonferroni adjusted alpha
(α0 ¼ alpha prime). The Bonferroni adjustment is α0 ¼ α/c, where α is the alpha
used for the overall set of mean ranks and c is the number of comparisons being
made. Our overall alpha is .01 and there are two comparisons to be made, so
α0 ¼ .01/2 ¼ .005. We will be using α0 ¼ .005 as our criterion to determine if a
pair of mean ranks is significantly different.

Mann-Whitney U Statistical Analysis

SPSS Commands for MWU

1. Select Analyze . Nonparametric Tests . click on Legacy Dialogs . 2
Independent Samples.

2. Click over PainImprovement under Test Variable List and ElectricStimula-
tion under Grouping Variable . click on Options . check Descriptive
and click Continue . click on Mann-Whitney U under Test Type.
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3. Click on Define Groups and type a 1 next to Group 1 and a 2 next to
Group 2 . click continue . click OK. This will produce the output for
the comparison of the first two groups. Next you need to conduct the other
two group comparisons and add them to the output.

4. Go back to step 1 and select the same commands again but first change
Group 1 ¼ 2, Group 2 ¼ 3. You will have the results of two pairs of
groups (low stimulation vs. placebo and high stimulation vs. placebo) on the
output.

The mean ranks of pain improvement produced by the low electric stimu-
lation (Mrank ¼ 24.50) and placebo (Mrank ¼ 16.50) show more pain
improvement descriptively in the low electric stimulation condition compared to
the placebo condition (see Table 11.11). We will be using the exact significance
(p ¼ .030) value to compare to our α0 ¼ .005. Exact significance is an observed
significance used with small sample sizes. Exact probabilities are possible to obtain
from various configurations of the data when the null hypothesis is true (Norusis,
2005a). The difference between the mean ranks is not significantly different, Z
(N ¼ 40) ¼ �2.195, p . .005 (see Table 11.12).

We conclude that there is a significant difference between the mean ranks of
pain improvement between the placebo condition (Mrank ¼ 15.43) and the high
electric stimulation condition (Mrank ¼ 25.58), Z(N ¼ 40) ¼ �2.775, p #

.005 (see Tables 11.13 and 11.14). Our decision is to reject if our calculated
probability level is equal to or less than alpha. The exact significance is .005 and
our α0 ¼ .005, so we decide to reject the null hypothesis. There was significantly
higher pain improvement among participants who received the high electric
condition when compared to the placebo participants.

TABLE 11.11 Mean Ranks of the Low Electric Stimulation Condition
Compared to the Placebo Condition

Ranks

ElectricStimulation N Mean Rank Sum of Ranks

PainImprovement Low Elect Stim 20 24.50 490.00

Placebo 20 16.50 330.00

Total 40
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Magnitude of Treatment Effect—Post Hoc Effect Size
and Post Hoc Power

We are going to use G*Power again but this time to obtain post hoc effect sizes
and power values.

TABLE 11.12 MWU Results Comparing Low Electric Stimulation to Placebo

Test Statisticsa

PainImprovement

Mann-Whitney U 120.000

Wilcoxon W 330.000

Z 22.195

Asymp. Sig. (2-tailed) .028

Exact Sig. [2 3 (1-tailed Sig.)] .030b

aGrouping variable: ElectricStimulation.
bNot corrected for ties.

TABLE 11.13 Mean Ranks of the Placebo Condition Compared
to the High Electric Stimulation Condition

Ranks

ElectricStimulation N Mean Rank Sum of Ranks

PainImprovement Placebo 20 15.43 308.50

High Elect Stim 20 25.58 511.50

Total 40

TABLE 11.14 MWU Results Comparing Placebo to High Electric
Stimulation

Test Statisticsa

PainImprovement

Mann-Whitney U 98.500

Wilcoxon W 308.500

Z 22.775

Asymp. Sig. (2-tailed) .006

Exact Sig. [2 3 (1-tailed Sig.)] .005b

aGrouping variable: ElectricStimulation.
bNot corrected for ties.
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Post Hoc Effect Size and Power Analyses Using G*Power 3.1.2 for Low
Electric Stimulation versus Placebo

1. Open up the G*Power 3.1.2 program.

2. Select t tests under Test family . under Statistical test, select Means:
Wilcoxon-Mann-Whitney test (two groups) . under Type of power
analysis, select Post hoc: Compute achieved power - given α, sample size,
and effect size.

3. Select One beside Tail(s) . select Normal next to Parent distribution.

4. Click on the Determine button and a new window is created . click on the
button that says n1 5 n2 . Go to Table 11.2 in the text to obtain the means
and standard deviations (SDs) of the condition groups that we will use in this
new window.

5. From Table 11.2, type in 28.700 beside Mean group 1 and 26.750 next to
Mean group 2 . type in 2.830 next to SDσ group 1 and 2.291 next to SDσ
group 2 . Calculate and transfer to main window (this will produce a post
hoc effect size for the comparison of low electric stimulation and the placebo).

6. Beside α err prob, type in 0.01 . next to Sample size group 1 type in
20 . next to Sample size group 2 type in 20 . click on Calculate.

The results in Figure 11.10 show a post hoc magnitude of treatment effect of
d ¼ .7573863, which is a high-medium effect size using Cohen’s convention
of small ¼ .20, medium ¼ .50, and large ¼ .80. The post hoc power probability
is .471, which means that we had only a 47.10 percent of correctly rejecting a false
null hypothesis given our sample size of 40, α ¼ .01, and post hoc effect size of
d ¼ .757 (rounded to three places).

Earlier we conducted a post hoc comparison of the mean ranks of pain
improvement between the low electrical stimulation condition and placebo condi-
tion using the Mann-Whitney U statistic. We did not find a significance difference
using a corrected alpha level (p ¼ .030 . α0 ¼ .005), which is consistent with the
low post hoc power. However, the post hoc effect size is meaningful at d ¼ .757
(high-medium), so practical significance related to low electric stimulation producing
pain reduction seems to exist even though the null was not found to be significant. It
is possible that increasing the sample size or improving the treatment protocol to have
more fidelity might result in a significant null in a future study.
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Post Hoc Effect Size and Power Analyses Using G*Power 3.1.2 for High
Electric Stimulation versus Placebo

1. Open up the G*Power 3.1 program.

2. Select t tests under Test family . under Statistical test, select Means:
Wilcoxon-Mann-Whitney test (two groups) . under Type of power

FIGURE 11.10 Post Hoc Effect Size and Power Analysis for Low Electric
Stimulation versus Placebo
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analysis, select Post hoc: Compute achieved power - given α, sample size,
and effect size.

3. Select One beside Tail(s) . select Normal next to Parent distribution.

4. Click on the Determine button and a new window is created . click on the
button that says n1 5 n2 . Go to Table 11.2 in the text to obtain the
means and standard deviations (SDs) of the condition groups that we will use
in this new window.

5. From Table 11.2, type in 26.750 beside Mean group 1 and 28.900 next
to Mean group 2 . type in 2.291 next to SD σ group 1 and 2.770 next to
SD σ group 2 . Calculate and transfer to main window (this will pro-
duce a post hoc effect size for the comparison of low electric stimulation and
the placebo).

6. Beside α err prob, type in 0.01 . next to Sample size group 1 type in
20 . next to Sample size group 2 type in 20 . click on Calculate.

The results in Figure 11.11 reflect a large post hoc effect size (d ¼ .8458544).
The post hoc power value (.5751825), however, is lower than a criterion of .80.
Nevertheless, we found in a previous analysis that the null was rejected comparing
the high electric stimulation condition to the placebo condition (p# .005) even
though our observed power is lower than expected. The large post hoc effect size
supports the early finding of more pain improvement from the high electric
stimulation condition compared to the placebo condition.

FORMULA CALCULATIONS

X2
KW ¼ 12=N ðN þ 1Þ

X
R2
i � 3ðN þ 1Þ

where N ¼ total sum of cases being analyzed

Ri ¼ rank sum of each group

ni ¼ cases for each group

12 & 3 ¼ constants that are always included in the formula
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Mann-Whitney (MW) U Statistic

X2
KW ¼ 12=60ð60þ 1ÞP½444,889=20þ 183,612:25=20

þ 539,490:25=20� � 3ð60þ 1Þ
¼ 12=3,660

P½22,244:45þ 9,180:61þ 26,974:51� � 183

FIGURE 11.11 Post Hoc Effect Size and Power Analysis for High Electric
Stimulation versus Placebo
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¼ ð:00328Þð58,399:57Þ � 183

¼ 191:55� 183

X2
KW ¼ 8:6

Mann-Whitney U Test

UMW ¼ n1n2 þ ½n2ðn2 þ 1Þ=2� � R2

¼ ð20Þð20Þ þ ½20ð20þ 1Þ=2� � 330

¼ 400þ ½420=2� � 330

TABLE 11.15 Formula Kruskal-Wallis and Mann-Whitney U Calculations of
the Study Results

Kruskal-Wallis (K-W) One-Way Analysis of Variance

Low Stimulation Placebo High Stimulation

Score Rank Score Rank Score Rank

28 30.50 26 10.50 29 41.00

38 60.00 19 1.00 28 30.50

26 10.50 30 50.00 27 20.50

29 41.00 25 4.00 37 59.00

26 10.50 27 20.50 31 55.50

27 20.50 26 10.50 26 10.50

29 41.00 29 41.00 23 2.00

29 41.00 28 30.50 26 10.50

28 30.50 26 10.50 30 50.00

27 20.50 27 20.50 29 41.00

30 50.00 28 30.50 30 50.00

31 55.50 27 20.50 31 55.50

27 20.50 27 20.50 27 20.50

28 30.50 28 30.50 28 30.50

32 58.00 26 10.50 28 30.50

26 10.50 29 41.00 29 41.00

25 4.00 26 10.50 30 50.00

29 41.00 25 4.00 28 30.50

30 50.00 29 41.00 30 50.00

29 41.00 27 20.50 31 55.50

R ¼ 667.00 R ¼ 428.50 R ¼ 734.50

R2 ¼ 444,889 R2 ¼ 183,612.25 R2 ¼ 539,490.25
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¼ 400þ 210� 330

¼ 610� 330

UMW ¼ 280

ZMW ¼ ðn1n2=2Þ � Uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið½ðn1Þðn2Þðn1 þ n2 þ 1�=12Þp

¼ 200� 280ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið½ð20Þð20Þð20þ 20þ 1�=12Þp

¼ �80ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið16,400=12Þp

TABLE 11.16 Low Electric Stimulation Condition Compared to Placebo
Condition on Pain Improvement

Low Stimulation Placebo

Score Rank Score Rank

28 23.50 26 8.50

38 40.00 19 1.00

26 8.50 30 36.00

29 30.50 25 3.00

26 8.50 27 16.50

27 16.50 26 8.50

29 30.50 29 30.50

29 30.50 28 23.50

28 23.50 26 8.50

27 16.50 27 16.50

30 36.00 28 23.50

31 38.00 27 16.50

27 16.50 27 16.50

28 23.50 28 23.50

32 39.00 26 8.50

26 8.50 29 30.50

25 3.00 26 8.50

29 30.50 25 3.00

30 36.00 29 30.50

29 30.50 27 16.50

R ¼ 490 R ¼ 330
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¼ �80
36:969

ZMW ¼ � 2:2

UMW ¼ n1n2 þ ½n2ðn2 þ 1Þ=2� � R2

¼ ð20Þð20Þ þ ½20ð20þ 1Þ=2� � 308:50

¼ 400þ ½420=2� � 308:50

¼ 400þ 210� 308:50

¼ 610� 308:50

UMW ¼ 301:50

TABLE 11.17 High Stimulation Condition Compared to Placebo Condition
on Pain Improvement

High Stimulation Placebo

Score Rank Score Rank

29 28.500 26 8.000

28 22.000 19 1.000

27 15.000 30 34.000

37 40.000 25 3.500

31 38.000 27 15.000

26 8.000 26 8.000

23 2.000 29 28.500

26 8.000 28 22.000

30 34.000 26 8.000

29 28.500 27 15.000

30 34.000 28 22.000

31 38.000 27 15.000

27 15.000 27 15.000

28 22.000 28 22.000

28 22.000 26 8.000

29 28.500 29 28.500

30 34.000 26 8.000

28 22.000 25 3.500

30 34.000 29 28.500

31 38.000 27 15.000

R ¼ 511.50 R ¼ 308.50
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ZMW ¼ ðn1n2=2Þ � Uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið½ðn1Þðn2Þðn1 þ n2 þ 1�=12Þp

¼ 200� 301:50ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið½ð20Þð20Þð20þ 20þ 1�=12Þp

¼ �101:50ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið16,400=12Þp

¼ �101:50
36:969

ZMW ¼ � 2:7

Study Results

The purpose of this study was to determine if chronic low back pain experienced
by persons who have multiple sclerosis can be improved by exposure to trans-
cutaneous electrical nerve stimulation applied to the lumbar spine. A randomized
control group design was used with low electric stimulation, placebo, and high
electric stimulation conditions. The effects of treatment condition were assessed
on pain improvement as measured by the MPQ. MPQ scores were obtained
before treatment began. Improvement scores were recorded following treatment.
Higher improvement scores represent greater pain improvement.

Sixty persons who havemultiple sclerosis comprised the sample. The average age
of participants was 42.30 (SD ¼ 4.20). There were 48 females (80 percent) and 12
males (20 percent). The participants have experienced low back pain over 11 years.

Two a priori power analyses were conducted. A $.80 power was achieved for
the low electric stimulation versus placebo and the high electric stimulation versus
placebo conditions.

The data were screened as accurate with no missing data. The assessment of
the underlying assumption of homogeneity of variance was met but normality was
not met. There was a consistent pattern of the existence of outliers, significant
skew, and significant kurtosis. Thus, the decision was made to use a nonparametric
Kruskal-Wallis analysis of variance to test the omnibus null hypothesis.

The means, mean ranks, and standard deviations related to pain improvement
across the conditions were: (1) low electric stimulation condition (M ¼ 28.700,
Mrank ¼ 33.35, SD ¼ 2.830); (2) placebo condition (M ¼ 26.750,Mrank ¼ 21.43,
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SD ¼ 2.291); andhigh electric stimulation condition (M ¼ 28.900,Mrank ¼ 36.73,
SD ¼ 2.770).

The participants with MS were tested for significant differences in pain
improvement across the conditions (low electric stimulation, placebo, high
electric stimulation) with a Kruskal-Wallis one-way analysis of variance using an
alpha criterion of α ¼ .01. The omnibus K-W analysis was not significant,
χ2(N ¼ 60, df ¼ 2) ¼ 8.663, p . .01.

There was an a priori decision to conduct two paired-means analyses com-
paring the low electric stimulation and the high electric stimulation conditions
to the placebo condition regardless of whether the omnibus null hypothesis
was significant. The comparison between the low electric stimulation condition
and the placebo did not generate a significant difference in pain improvement,
z(N ¼ 40) ¼ �2.195, p . .005. Yet there was a high-medium post hoc effect
size (d ¼ .757), demonstrating practical significance related to the difference.

There was significant pain improvement resulting from the high electric
stimulation condition compared to participants receiving the placebo, z(N ¼
40) ¼ �2.775, p # .005, d ¼ .846.

Overall, the results are mixed on the effectiveness of electrical stimulation on
improving chronic low back pain of participants who have multiple sclerosis. The
omnibus null hypothesis comparing the effects of all conditions together on pain
improvement was not significant. The comparison of low electric stimulation on
pain improvement compared to the placebo condition was not significantly
different, although the practical significance of the difference was medium-high.
The high electric stimulation condition did produce significantly higher pain
improvement when compared to the participants in the placebo condition.

NONPARAMETRIC RESEARCH PROBLEM TWO:
FRIEDMAN’S RANK TEST FOR CORRELATED SAMPLES AND

WILCOXON’S MATCHED-PAIRS SIGNED-RANKS TEST

Two common nonparametric statistics used with correlated samples are
Friedman’s rank test for correlated samples and Wilcoxon’s matched-pairs signed-
ranks test. Friedman’s test compares the mean ranks of two or more groups and is
an analogue to the repeated measures analysis of variance. Wilcoxon’s matched
pairs test compares the mean ranks of two groups and parallels the parametric
dependent t-test.
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We are going to use the same research problem that we used for illustrating the
K-WandMWU, butwe are going to answer a different research question using new
data.Wewant to know if pain improvement changes when high electric stimulation
is added and removedwith the same participants over time (24weeks). The research
design is a repeated-treatment design similar to the one used for the RM-ANOVA
problem in Chapter 8 except that we have three repeated measures in this example
compared to four repeated measures in the RM-ANOVA example.

The independent variable is high electric stimulation operationally defined
with three conditions (first treatment, removed treatment, and restored treat-
ment). Each treatment is provided over eight weeks. The dependent variable is
pain improvement as measured by the McGill Pain Questionnaire (MPQ), which
is the same DV used in the K-W analysis.

The study problemdata set inTable 11.18, Friedman-WilcoxonData, does not
meet the underlying assumption of normality. Thus, Friedman’s statistic, the
nonparametric analogue to the RM-ANOVA,would bemore appropriate to use for

TABLE 11.18 Friedman-Wilcoxon Data

ID# First Treatment Removed Treatment Restored Treatment

1 28 19 27

2 38 17 29

3 26 20 30

4 29 10 26

5 26 23 25

6 27 16 25

7 29 17 27

8 26 19 28

9 26 18 24

10 32 20 23

11 25 17 38

12 27 20 26

13 26 19 28

14 25 18 27

15 25 21 29

16 29 22 23

17 28 17 24

18 27 16 27

19 37 15 28

20 31 9 29
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this problem. We will check a priori power before conducting the Friedman sta-
tistical analysis.

A Priori Power Analysis for Friedman and Wilcoxon Statistical
Analyses

We will check the a priori power for the comparisons of the high electric stim-
ulation first treatment and restored treatment conditions to the removed treat-
ment condition using N ¼ 20, α ¼ .01, and estimated effect size of d ¼ 1.0.
We will perform only one power analysis since we would use the same estimated
effect size for both analyses and the answer would be the same.

A Priori Power Analysis Using G*Power 3.1.2 for High Electric Stimulation
at First Treatment (or Restored Treatment) versus Removed Treatment

1. Open up the G*Power 3.1.2 program.

2. Select t tests under Test family . under Statistical test, select Means:
Wilcoxon signed-rank test (matched pairs) . under Type of power
analysis, select A priori: Compute required sample size - given α, power,
and effect size.

3. Select One beside Tail(s) . select Normal next to Parent distribution
. type in 1.0 next to Effect size dz . beside α err prob, type 0.01 .

beside Power (1-β err prob), type 0.80 . click on Calculate.

The results of the a priori power analysis show that to reach a power of
.8211338 with an α ¼ .01, and estimated effect size of d ¼ 1.0, we would need
an N ¼ 14 (see Figure 11.12). We are using an N ¼ 20 in this study, so we met
the criterion of desired power ¼ $.80.

Friedman’s Repeated Measures Analysis of Variance of the
Omnibus H0

Friedman’s RM-ANOVA SPSS Commands

1. Click Analyze . click Nonparametric Tests . click on Legacy Dialogs
. click K Related Samples . click over FirstTreatment, RemovedTreatment,
RestoredTreatment under Test Variable List . click on Friedman under
Test Type.
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2. Click on the Statistics button . check the Descriptive box and then
Continue and then OK.

3. Save generated output as Friedman Results.

The results of this analysis provide information to test the omnibus null
hypothesis of the study:

FIGURE 11.12 A Priori Power Analysis Results for High Electric Stimulation
at First Treatment (or Restored Treatment) versus Removed Treatment
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H0: There will be no significant mean rank differences in pain improve-
ment (MPQ scores) across the high electric stimulation conditions (first
treatment, removed treatment, restored treatment).

H0: μrank1¼ μrank2 ¼ μrank3

We are using an α ¼ .01 and plan to follow up Friedman’s statistic analysis
with a post hoc analysis using Wilcoxon’s statistic.

The descriptive statistics in Table 11.19 show that the first treatment of high
electric stimulation shows the highest pain improvement, closely followed by the
restored treatment condition. Considerably less pain improvement was realized
by the removed treatment condition. The mean ranks parallel these findings:
(1) first treatment (Mrank ¼ 2.68), (2) restored treatment (Mrank ¼ 2.33), and
(3) removed treatment (Mrank ¼ 1.00) (see Table 11.20).

The results of testing the null hypothesis are inTable 11.21. There is a significant
difference among the mean ranks of pain improvement, χ2(N ¼ 20, df ¼ 2) ¼
31.620, p , .01. Let’s next assess which pairedmean ranks are significantly different
usingWilcoxon’s statistic with a Bonferroni alpha correction of .01/3 ¼ α0 ¼ .003.
We are going to compare all three possible pairs of mean ranks.

TABLE 11.19 Descriptive Statistics of Pain Improvement by High Electric
Conditions

Descriptive Statistics

N Mean Std. Deviation Minimum Maximum

FirstTreatment 20 28.3500 3.67459 25.00 38.00

RemovedTreatment 20 17.6500 3.46828 9.00 23.00

RestoredTreatment 20 27.1500 3.28113 23.00 38.00

TABLE 11.20 Mean Ranks of Pain Improvement by High Electric
Conditions

Ranks

Mean Rank

FirstTreatment 2.68

RemovedTreatment 1.00

RestoredTreatment 2.33
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Wilcoxon’s Statistical Analysis

SPSS Commands for Wilcoxon’s Statistic

1. Select Analyze . Nonparametric Tests . click on Legacy Dialogs . 2
Related Samples.

2. Click over FirstTreatment next to Pair 1 under Variable 1 and click over
RemovedTreatment next to Pair 1 under Variable 2.

3. Click over FirstTreatment next to Pair 2 under Variable 1 and click over
RestoredTreatment next to Pair 2 under Variable 2.

4. Click over RemovedTreatment next to Pair 3 under Variable 1 and click over
RestoredTreatment next to Pair 3 under Variable 2.

5. Click on Options . check Descriptive and click Continue.

6. Click on Wilcoxon under Test Type and click OK.

The Wilcoxon results in Table 11.22 show that two pairs of mean ranks of
pain improvement are significant. The first treatment condition of high electric
stimulation produced significantly higher pain improvement when compared to
the removed treatment condition, Z(N ¼ 20) ¼ �3.929, p , .003. Addition-
ally, the restored treatment condition was significantly higher in pain improve-
ment compared to the removed treatment condition, Z(N ¼ 20) ¼ �3.924,
p , .003. There was not a significant difference in pain improvement between
the high electric stimulation conditions of first treatment and restored treatment
(p . .003).

TABLE 11.21 Friedman’s Statistic of
Pain Improvement by High Electric
Conditions

Test Statisticsa

N 20

Chi-square 31.620

df 2

Asymp. sig. .000

aFriedman test

c11 18 June 2012; 20:26:54

RANDOMIZED CONTROL GROUP AND REPEATED-TREATMENT DESIGNS AND NONPARAMETICS � 387



TABLE 11.22 Wilcoxon Results

Test Statisticsa

RemovedTreatment 2
FirstTreatment

RestoredTreatment 2
FirstTreatment

RestoredTreatment 2
RemovedTreatment

23.929b 21.175b 23.924c

Asymp. sig. (2-tailed) .000 .240 .000

aWilcoxon Signed Ranks Test.
bBased on positive ranks.
cBased on negative ranks.
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Magnitude of Treatment Effect—Post Hoc Effect Size and Post Hoc
Power for Nonparametric Research Problem 2

We are using G*Power to obtain post hoc effect sizes and power values. However,
before using G*Power we will need to obtain correlation coefficients on pain
improvement between treatment conditions to use in the G*Power analyses.

Correlation Coefficients on Pain Improvement between Treatment
Conditions

1. Open up the IBM SPSS data file called Friedman-Wilcoxon-Data.

2. Analyze . Correlate . Bivariate.

3. Click over FirstTreatment and RemovedTreatment under Variables: .
click on the box beside Spearman only . click on one-tailed under Test of
Significance . click OK. This will produce output and you will add the
results of two additional analyses to it.

4. Keep output open and return to data set and click . Analyze .
Correlate . Bivariate.

5. Click the Reset button . click over FirstTreatment and RestoredTreat-
ment under Variables: . click on the box beside Spearman only . click
on one-tailed under Test of Significance . click OK. This will produce
output and you will add the results of one additional analysis to it.

6. Keep output open and return to data set and click . Analyze .

Correlate . Bivariate.

7. Click the Reset button . click over RemovedTreatment and Restored-
Treatment under Variables: . click on the box beside Spearman only
. click on one-tailed under Test of Significance . click OK. You now
have the Spearman correlation coefficients for all three pairs of conditions on
pain improvement that will be used in the G*Power analyses.

Post Hoc Effect Size and Power Analyses Using G*Power 3.1 for High
Electric Stimulation at First Treatment versus Removed Treatment

1. Open up the G*Power 3.1 program.

2. Select t tests under Test family . under Statistical test, select Means:
Wilcoxon signed-rank test (matched pairs) . under Type of power

c11 18 June 2012; 20:26:54

RANDOMIZED CONTROL GROUP AND REPEATED-TREATMENT DESIGNS AND NONPARAMETICS � 389



analysis, select Post hoc: Compute achieved power - given α, sample size,
and effect size.

3. Select One beside Tail(s) . select Normal next to Parent distribution.

4. Click on the Determine button and a new window is created that we will be
putting values in to arrive at our post hoc effect size . click on the button
that says From group parameters . Go to Table 11.? in the text to obtain
the means and standard deviations (SDs) of the condition groups that we will
use in this new window.

5. From Table 11.19 type in 28.350 beside Mean group 1 and 17.650 next
to Mean group 2 . type in 3.675 next to SD σ group 1 and 3.468 next to
SD σ group 2 . type in �.387 next to Correlation between groups .
Calculate and transfer to main window (this will produce a post hoc effect
size for the comparison of high electric stimulation at first treatment versus
removed).

6. Beside α err prob, type 0.01 . next to Total sample size type in 40 .

click on Calculate.

The results in Figure 11.13 show a large post hoc magnitude of treatment
effect (d ¼ 1.798). The large effect size is consistent with our previous decision
to reject the null hypothesis that pain improved significantly at the first high
electric stimulation treatment compared to the removed treatment condition.

The post hoc power value of 1.0 shows that there was a 100 percent chance of
correctly rejecting a false null hypothesis with a sample size of 40, α ¼ .01, and
post hoc effect size of d ¼ 1.798.

Post Hoc Effect Size and Power Analyses Using G*Power 3.1.2 for High
Electric Stimulation at First Treatment versus Restored Treatment

1. Open up the G*Power 3.1.2 program.

2. Select t tests under Test family . under Statistical test, select Means:
Wilcoxon signed-rank test (matched pairs) . under Type of power
analysis, select Post hoc: Compute achieved power - given α, sample size,
and effect size.

3. Select One beside Tail(s) . select Normal next to Parent distribution.
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4. Click on the Determine button and a new window is created that we will be
putting values in to arrive at our post hoc effect size . click on the button
that says From group parameters . Go to Table 11.19 in the text to obtain
the means and standard deviations (SDs) of the condition groups that we will
use in this new window.

FIGURE 11.13 Post Hoc Effect Size and Power Analysis for High Electric
Stimulation at First Treatment versus Removed Treatment

c11 18 June 2012; 20:26:54

RANDOMIZED CONTROL GROUP AND REPEATED-TREATMENT DESIGNS AND NONPARAMETICS � 391



5. From Table 11.19, type in 28.350 beside Mean group 1 and 27.150 next
to Mean group 2 . type in 3.675 next to SD σ group 1 and 3.281 next to
SD σ group 2 . type in �.230 next to Correlation between groups .
Calculate and transfer to main window (this will produce a post hoc effect
size for the comparison of high electric stimulation at first treatment versus
restored treatment).

6. Beside α err prob, type 0.01 . next to Total sample size type in 40 .

click on Calculate.

The results in Figure 11.14 show an effect size of dz ¼ .2197599, which is in
the small range. The small effect size is consistent with the paired mean ranks
analysis that showed no significant difference in pain improvement when com-
paring the high electric stimulation first treatment condition and restored treat-
ment condition. The post hoc power is low at .1545664, suggesting there was
only a 15.5 percent chance of correctly rejecting a false null hypothesis with a
sample size of 40, α ¼ .01, and post hoc effect size of dz ¼ .220 (rounded).

Post Hoc Effect Size and Power Analyses Using G*Power 3.1 for High
Electric Stimulation at Removed Treatment versus Restored Treatment

1. Open up the G*Power 3.1 program.

2. Select t tests under Test family . under Statistical test, select Means:
Wilcoxon signed-rank test (matched pairs) . under Type of power
analysis, select Post hoc: Compute achieved power - given α, sample size,
and effect size.

3. Select One beside Tail(s) . select Normal next to Parent distribution.

4. Click on the Determine button and a new window is created that we will be
putting values in to arrive at our post hoc effect size . click on the button
that says From group parameters . Go to Table 11.19 in the text to obtain
the means and standard deviations (SDs) of the condition groups that we will
use in this new window.

5. From Table 11.19, type in 17.650 beside Mean group 1 and 27.150 next
to Mean group 2 . type in 3.468 next to SD σ group 1 and 3.281 next to
SD σ group 2 . type in �.209 next to Correlation between groups .
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Calculate and transfer to main window (this will produce a post hoc effect
size for the comparison of high electric stimulation at removed treatment
versus restored treatment).

6. Beside α err prob, type 0.01 . next to Total sample size type in 40 .

click on Calculate.

FIGURE 11.14 Post Hoc Effect Size and Power Analyses Using G*Power 3.1
for High Electric Stimulation at First Treatment versus Restored Treatment
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The results in Figure 11.15 show that the post hoc effect size was large
(dz ¼ 1.8099934) comparing the difference between the high electric stimula-
tion removed treatment to the restored treatment. The post hoc power shows that
we had a 100 percent chance of correctly rejecting a false null hypothesis with the
same N ¼ 40 and α ¼ .01 and a large effect size of dz ¼ 1.810 (rounded).

FIGURE 11.15 Post Hoc Effect Size and Power Analysis for High Electric
Stimulation at Removed Treatment versus Restored Treatment
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Formula Calculations for Friedman’s Rank Test and Wilcoxon’s
Matched-Pairs Signed-Ranks Test

X 2
F ¼ 12=NK ðK þ 1Þ

X
R2
i � 3N ðK þ 1Þ

where N ¼ total sum of cases being analyzed

K ¼ number of groups

Ri ¼ rank sum of each group

n ¼ sum of cases for each group

12 & 3 ¼ constants that are always part of the formula

TABLE 11.23 Friedman’s Rank Test

First Treatment Removed Treatment Restored Treatment

Score Rank Score Rank Score Rank

28 3 19 1 27 2

38 3 17 1 29 2

26 2 20 1 30 3

29 3 10 1 26 2

26 3 23 1 25 2

27 3 16 1 25 2

29 3 17 1 27 2

26 2 19 1 28 3

26 3 18 1 24 2

32 3 20 1 23 2

25 2 17 1 38 3

27 3 20 1 26 2

26 2 19 1 28 3

25 2 18 1 27 3

25 2 21 1 29 3

29 3 22 1 23 2

28 3 17 1 24 2

27 2.5 16 1 27 2.5

37 3 15 1 28 2

31 3 9 1 29 2

Ri ¼ 53.50 Ri ¼ 20.00 Ri ¼ 46.50

R2i ¼ 2,862.25 R2i ¼ 400.00 R2i ¼ 2,162.25

c11 18 June 2012; 20:26:59

RANDOMIZED CONTROL GROUP AND REPEATED-TREATMENT DESIGNS AND NONPARAMETICS � 395



X 2
F ¼ 12=ð20Þð3Þð4ÞP½ð2,862:25þ 400þ 2,162:25Þ� � ð3Þð20Þð4Þ
¼ 12=240½5,424:50� � 240

¼ :05½5,424:50� � 240

¼ 271:225� 240

X 2
F ¼ 31:225

z ¼
T � nðnþ 1Þ

4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 1Þð2nþ 1Þ

24

s

TABLE 11.24 Wilcoxon’s Matched-Pairs Signed-Ranks Test: First
Treatment Scores Compared to Removed Treatment Scores

First Treatment
Scores

Removed
Treatment Scores

Difference
Removed 2 First

Rank of
Difference

Signed
Rank

28 19 29 11.00 211.00

38 17 221 18.00 218.00

26 20 26 3.00 23.00

29 10 219 17.00 217.00

26 23 23 1.00 21.00

27 16 211 13.00 213.00

29 17 212 15.50 215.50

26 19 27 6.00 26.00

26 18 28 9.50 29.50

32 20 212 15.50 215.50

25 17 28 9.50 29.50

27 20 27 6.00 26.00

26 19 27 6.00 26.00

25 18 27 6.00 26.00

25 21 24 2.00 22.00

29 22 27 6.00 26.00

28 17 211 13.00 213.00

27 16 211 13.00 213.00

37 15 222 19.50 219.50

31 9 222 19.50 219.50

T ¼ 210 T ¼ 2210
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¼
�210� 20ð20þ 1Þ

4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20ð20þ 1Þð2½20� þ 1Þ

24

s

¼�210� 105ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
717:50

p

¼ �105
26:786

z ¼� 3:92

TABLE 11.25 Wilcoxon’s Matched-Pairs Signed-Ranks Test: Restored
Treatment Scores Compared to Removed Treatment Scores

Restored
Treatment
Scores

Removed
Treatment
Scores

Difference
Removed2
Restored

Rank of
Difference

Signed
Rank

27 19 28 13.50 213.50

29 17 212 5.00 25.00

30 20 210 7.50 27.50

26 10 216 3.00 23.00

25 23 22 19.00 219.00

25 16 29 10.50 210.50

27 17 210 7.50 27.50

28 19 29 10.50 210.50

24 18 26 16.50 216.50

23 20 23 18.00 218.00

38 17 221 1.00 21.00

26 20 26 16.50 216.50

28 19 29 10.50 210.50

27 18 29 10.50 210.50

29 21 28 13.50 213.50

23 22 21 20.00 220.00

24 17 27 15.00 215.00

27 16 211 6.00 26.00

28 15 213 4.00 24.00

29 9 220 2.00 22.00

T ¼ 210 T ¼ 2210
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Nonparametric Research Problem Two Results

The aim of this study was to assess the effectiveness and stability of a high electric
stimulation treatment on pain improvement of persons with MS. We evaluated
whether pain improvement changes when high electric stimulation is added and
removed with the same participants over time using a repeated-treatment design.
The same 20 participants received three treatment conditions over 24 weeks. The
participants first received a high electric stimulation (first treatment) for eight
weeks, then the treatment was discontinued (removed treatment) for eight weeks,
and finally the treatment was reinstated (restored treatment) for eight weeks. The
participants’ pain improvement from baseline was measured at the end of each
treatment.

The a priori power analysis demonstrated that a desired power $.80 was
achieved usingN ¼ 20,α ¼ .01, and estimated effect size of d ¼ 1.0. Themeans,
mean ranks, and standard deviations related to pain improvement across the high
electric stimulation conditions were: (1) first treatment condition (M ¼ 28.350,
Mrank ¼ 2.68, SD ¼ 3.675), (2) removed condition (M ¼ 17.650, Mrank ¼
1.00, SD ¼ 3.468), and (3) restored condition (M ¼ 27.150, Mrank ¼ 2.33,
SD ¼ 3.281).

The Friedman statistic showed a significant difference among the mean ranks
of pain improvement, χ2(N ¼ 20, df ¼ 2) ¼ 31.620, p , .01. The post hoc
comparisons of mean ranks using the Wilcoxon statistic showed that the high
electric stimulation first treatment condition (Z[N ¼ 20] ¼ �3.929, p , .003,
d ¼ 1.798) and the restored treatment condition (Z[N ¼ 20] ¼ �3.924,
p , .003, d ¼ 1.810) resulted in significantly higher pain improvement than did
the removed treatment condition.

In conclusion, a high electric stimulation to the lumbar region of the spine
demonstrated effectiveness and stability in improving pain among persons with
multiple sclerosis who are experiencing chronic low back pain.

SUMMARY

Two research problems were presented in this chapter demonstrating the use of
nonparametric statistics. In the first study, a Kruskal-Wallis test for two or more
independent samples and a Mann-Whitney U test of two independent samples
were used. The variables and hypotheses were articulated within a randomized
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pretest-posttest control group design. A priori power and post hoc power were
generated using G*Power. Data screenings were conducted. Interpretations
were presented of the omnibus null hypothesis and the three mean rank pairs
using a Bonferroni adjusted alpha to protect against making a Type I error
decision. The results of the analyses were presented.

The Friedman’s test for two or more correlated samples and the Wilcoxon’s
test for two correlated samples were illustrated in the second example. Again, a
priori and post hoc power analyses were conducted. The omnibus null hypothesis
was interpreted along with Bonferroni corrections to the paired mean ranks
comparisons. The overall results of the second study were also presented.

PROBLEM ASSIGNMENT

The steps involved in conducting nonparametric statistics using IBM SPSS have
been presented in this chapter. Now it is your turn to independently work
through the steps of the hypothesis-testing process related to nonparametrics
using IBM SPSS. Go to the companion website and you will find a new research
problem and data set along with a worksheet to complete that relate to non-
parametric statistics covered in this chapter. Use the problems presented in this
chapter as guides so you can complete the assignment. Your instructor will
evaluate your completed worksheet when it is finished.

KEY TERMS

alpha correction

asymptotic significance

Bonferroni adjusted alpha

exact significance

family of conclusions

Friedman’s rank test for correlated

samples

inflated Type I error risk

Kruskal-Wallis ANOVA

Mann-Whitney U (MWU) statistic

nonparametric statistics

randomized pretest-posttest

control group design

Wilcoxon’s matched-pairs

signed-ranks test
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Chapter 12

BIVARIATE AND

MULTIVARIATE CORRELATION

METHODS USING MULTIPLE

REGRESSION ANALYSIS

LEARNING OBJECTIVES

� Identify the components and application of a bivariate
correlation coefficient and multiple regression analysis.

� Conduct data diagnostics to assess for underlying
assumptions.

� Execute a sequential multiple regression analysis using SPSS.

� Analyze the data and interpret the study findings com-
bining the various analyses.
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A study is presented that is suited for analyses using bivariate correla-
tions and a sequential multiple regression analysis. The data are screened
prior to analyses of the main study hypotheses. The null hypothesis is

tested and interpreted. The written results are reported.

RESEARCH PROBLEM

In this study, a sample of 120 doctoral students in clinical psychology, counseling
psychology, and counselor education program students completed the Scientist
Practitioner Inventory (SPI) and the Dissertation Stress Inventory (DSI). High
noncompletion rates of students in doctoral programs have been reported, including
50 percent (Kluever, 1997) and 43 percent (Denecke, 2006). Completing a dis-
sertation is one of the most important milestones to reach in most doctoral pro-
grams. Dissertations tend to emphasize student skills of working productively with a
dissertation chair and committee, persistence, organization, research, and analysis.

Doctoral students need to have interests and skills in both clinical and research
areas to be successful in clinical and counseling psychology programs. However,
doctoral students in clinically oriented programs often have more interests in clinical
activities than in research activities. Completing a dissertation is a complex research
process and, asCone and Foster (2006) state, “yourwriting andmethodological skills
are the most important determinants of your success in the research process” (p. 21).

The researchers in this study want to assess whether doctoral students’ lower
interests in scientist activities more highly predict higher dissertation stress than do
their interests in practitioner activities. The Scientist and Practitioner scales of the
SPI are predictor variables, and higher scores reflect higher interests. The
dependent variable in the study is the Dissertation Stress Inventory (DSI), and
higher scores translate to higher dissertation stress perceived by the sample of
doctoral students.

Bivariate correlation coefficient, multiple correlation coefficient, and sequential
multiple regression analyses will be conducted. An α¼ .05 is used for all analyses.

STUDY VARIABLES

The predictor variables (independent variables) and dependent variable (criterion
variable) are identified in this section. Additionally, the operational definitions of
the variables are described.
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The two predictor variables (PVs) are measured by the Scientist and Practitioner
scales of the Scientist Practitioner Inventory (SPI) (Leong & Zachar, 1991). The
SPI consists of 21 items that measure interests in scientist activities and 21 items
assessing interests in practitioner activities. A five-point (1¼ very low interest to
5¼ very high interest) Likert-type scale is used for each item. The Scientist scale
measures student interests in activities related to research, statistics and design,
teaching/guiding/editing, and academic ideas. The Practitioner scale assesses
interests in activities involving therapy, clinical expertise and consultation, and
testing and interpretation. Higher scores on the SPI reflect higher interests.

The DSI is comprised of 53 items using a seven-point Likert-type scale ranging
from 1 (strongly disagree) to 7 (strongly agree). The DSI measures dissertation
stress reported by doctoral students in counseling and clinical psychology pro-
grams. The specific areas assessed are chair and committee functioning, student
organization and task commitment, statistics and research methodology compe-
tence, and relationship and financial functioning. High scores on all of the DSI
scales represent more perceived dissertation-related stress.

RESEARCH METHOD

The purpose of this correlation research is to explore bivariate relationships and
multiple relationships and predictions among variables. We will use bivariate cor-
relations (r) to assess the relationships between all pairs of variables in the study.
Amultiple correlation (R) will be used to assess the relationship of the two predictor
variables to the dependent variable.Wewill use a sequential multiple linear regression
to predict the criterion variable (dissertation stress) (Y) from the two predictor
variables (Xs).

In this study we will assess the extent that two predictor variables individually
and collectively predict a criterion variable. Each individual PV will be assessed
for its significant prediction to the DV, and the combination of the PVs will
be evaluated as to how they predict the CV. The research model to be used can be
written symbolically as dissertation stress is a function of interests in scientific
activities and practitioner activities.

YDissStress f ðX1SPIScientInterests,X2SPIPractInterestsÞ
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The statistical prediction model can be written:

Y
0 ¼ Aþ B1X1,B2X2

where Y 0 ¼ predicted value on the dependent variable (dissertation stress)

A¼ intercept, the value of Y when all the X values are zero

B¼ unstandardized regression coefficient assigned to each X value

X¼measured value of the independent variables.

Statistical Analysis: Bivariate Correlation and Multiple Regression

The Pearson product-moment correlation coefficient is the most commonly used
correlation coefficient, and it is used to generate bivariate correlations and is the
basic statistic in the multiple regression analyses (MRAs) in this study. There are
three types of linear multiple regression analysis.

One MRA type is called standard MRA (simultaneous MRA). All predictor
variables (PVs) are entered into the regression equation at once. Each PV is
evaluated in terms of what it adds uniquely to the prediction of the criterion
variable (CV). Standard MRA is best used in exploratory and hypothesis-building
regression models. Standard MRA can explain the basic multiple correlation, but
its use may be less theoretically based and may be criticized for being a shotgun
approach.

Another approach is called sequential MRA (hierarchical MRA). The PVs enter
the equation in an order specified by the researcher. Each is assessed in terms of
what it adds to the equation when it is added to the model. This is the favored
MRA by many researchers because it requires linking the analysis to previous
research, theory, and logic rather than just throwing variables into a model.
Sequential MRA is useful to designate the portion of variance associated with
some variables while holding others constant.

Finally, statistical MRA (stepwise MRA) uses a procedure in which the entry of
variables is based on statistical criteria in the statistical software program. In this
procedure, a PV is selected and removed as a model predictor based on its sta-
tistical and probability values in relation to other PVs. This approach has been
criticized if researchers do not use theory to guide the statistical MRA process.
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STATING THE OMNIBUS (COMPREHENSIVE)
RESEARCH QUESTION

Initially the ominibus research question is stated. Then the research and null
hypotheses are developed as logical extensions of the research question.

Omnibus Research Question (RQ)

The omnibus research question is: To what extent will lower interests in scientific
activities be a better predictor of higher dissertation stress reported by counseling
and clinical psychology doctoral students when compared to their interests in
practitioner activities?

HYPOTHESIS TESTING STEP 1: ESTABLISH THE
ALTERNATIVE (RESEARCH) HYPOTHESIS (Ha)

The omnibus (comprehensive) alternative hypothesis for our research problem is
stated next in both narrative and symbolic formats. We also will be addressing
subquestions and subhypotheses following the overall analysis.

Omnibus Narrative Alternative Hypothesis (Ha)

Ha: Lower interests in scientific activities will be a better predictor of higher
dissertation stress reported by counseling and clinical psychology doctoral
students when compared to their interests in practitioner activities.

Symbolic Ha

Yf ðX1, X2Þ 6¼ 0

where Y¼ dissertation stress

f¼ function of

X1¼ interests in scientific activities

X2¼ interests in practitioner activities
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HYPOTHESIS TESTING STEP 2: ESTABLISH THE NULL
HYPOTHESIS (H0)

The omnibus null hypothesis is stated in narrative and symbolic formats in the
second step of the hypothesis-testing process.

Omnibus Narrative Null Hypothesis (H0)

H0: Neither interests in scientific activities nor interests in practitioner
activities will significantly predict dissertation stress reported by
counseling and clinical psychology doctoral students.

Symbolic H0

Y f ðX1, X2Þ ¼ 0

HYPOTHESIS TESTING STEP 3: DECIDE ON A RISK
LEVEL (ALPHA) OF REJECTING THE TRUE H0

CONSIDERING TYPE I AND II ERRORS AND POWER

There has been little data-based research in the area of identifying significant
predictors of dissertation stress, so this is an exploratory study. As such, an alpha
of .05 provides a reasonable balance between avoiding rejecting the H0 when
there really are no significant relationships (Type I [alpha] error) and not rejecting
the H0 when there really are significant relationships (Type II [beta] error).

A Priori Power Analysis

We are planning to use N¼ 120, two predictor variables, and α¼ .05. A previous
similar study resulted in a squared multiple correlation of R2¼ .09, which
we will use to determine an estimated effect size for the a priori power analysis. We
will conduct the a priori power analysis using G*Power 3.1.2.

A Priori Power Analysis Using G*Power 3.1 for the Multiple Regression
Analysis

1. Open up the G*Power 3.1.2 program.

2. Select F tests under Test family. under Statistical test, select Linear
multiple regression: Fixed model, R2 increase. under Type of power
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analysis, select A priori: Compute required sample size - given α, power,
and effect size.

3. Click on the Determine box. in the newly created window click on Direct
circle. type in 0.09 next to Partial R2. click on the button Calculate and
transfer to main window. click on Close button.

4. Type in 0.05 next to α err prob. type in 0.80 next to Power (1-β err
prob). type in 2 next to Number of predictors. type in 2 next to Total
number of predictors. click Calculate.

The estimated effect size (f2¼ .0989011) to use in the power analysis was
calculated from the R2 (ρ2)¼ .09. The estimated effect size is transferred to
the full a priori power analysis. The planned α¼ .05, two predictors, desired
power¼ .80 are added to the analysis and the results show that a total sample size
of 101 is needed to reach a .8022579 power (see Figure 12.1). We meet the
power criteria with the planned sample size of 120 participants.

HYPOTHESIS TESTING STEP 4: CHOOSE APPROPRIATE
STATISTIC AND ITS SAMPLING DISTRIBUTION TO TEST

THE H0 ASSUMING H0 IS TRUE

We will be using bivariate correlations calculated using the Pearson product-
moment correlation coefficient and a sequential multiple regression analysis to
test the null hypothesis: Y f (X1, X2)¼ 0. We are going to assess the individual and
combined relationships of interests in scientist and practitioner activities in
predicting dissertation stress among doctoral students in counseling and clinical
psychology programs. Sequential multiple regression analysis is appropriate to use
because: (1) there is one continuously scaled dependent variable, and (2) there are
two or more predictor variables.

HYPOTHESIS TESTING STEP 5: SELECT SAMPLE, COLLECT
DATA, SCREEN DATA, COMPUTE STATISTIC,
AND DETERMINE PROBABILITY ESTIMATES

Data are collected from a sample of participants during Step 5 of the hypothesis-
testing process. The data are assessed for data accuracy,missing values, and univariate
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and multivariate outliers, and to determine whether the underlying assumptions of
the statistic are met. If needed, data modifications are made. Then, the null
hypothesis is testing using statistical analyses.

Sample Selection and Assignment

The sample in this study is selected using purposive sampling of typical instances
(Shadish, Cook, & Campbell, 2002), also called homogeneous sampling. In
purposive sampling of typical instances, we define the characteristics that reflect

FIGURE 12.1 A Priori Power Analysis of MRA Problem

c12 18 June 2012; 20:32:25

408 � CHAPT ER 12



the persons, settings, times, independent variables, and dependent variables we
intend to use to generalize our findings. We then select participants who match
the targeted characteristics.

The persons being studied in this sample are doctoral students in counseling
psychology, clinical psychology, and counselor education programs throughout
the United States.

Study Data Diagnostics

There are new screening procedures that wewill use for the sequentialMRA analysis.
Descriptions of these procedures will be discussed as we are using them. Many of
these procedures are selected when we run the sequential MRA main analyses.

Univariate Outlier Analysis

There are two predictor variables and one dependent variable that will be used in this
analysis. It is important to assess each variable for participant scores thatmay represent
significantly extreme high or low scores, so we will conduct an analysis for univariate
outliers. We will start with a familiar procedure, checking for univariate outliers.

SPSS Commands for Identifying Univariate Outlier

1. Analyze.Descriptive Statistics.Descriptives.

2. Click over DSI, SPIPract, and SPIScient under Variable(s):. click on the
box called Save standardized values as variables. click OK.

3. You can click out of the output produced and go to Data View, where new
variables have been created that represent the z-scores for the participants’
observed scores for all variables.

The highest6z-score for each variable taken from the Data View is presented
in Table 12.1. None of the z-scores reach the criterion of 63.29 (,.001, two-
tailed), so we conclude that there are no univariate outliers.

Next, we determine if there are any multivariate outliers in which one or
more cases have an “unusual combination of scores on two or more variables”
(Tabachnick & Fidell, 2007). Mahalanobis distance values are used to assess for
multivariate outliers, and they are produced as values in a new column on the
IBM SPSS Data View spreadsheet. Also, output is produced from the following
commands that will be used for all other screening and sequential MRA analyses.
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Sequential (Hierarchical) MRA Example SPSS Commands

1. Open up SPSS Data File called MRA-Data and click on Analyze.
Regression.Linear.

2. Click over DSI under Dependent:.

3. Under Independent(s):. click over SPIScient then click on the Next button
to the upper right. The SPIScient disappears and the program stores the
variable as the first predictor variable in the model you are developing. Then,
click over SPIPract and click on the Next button and it too disappears. You
now have set up the model we want to test.

4. Click on the Statistics button. check on Estimates, Confidence intervals,
and type in 95 beside Level(%):. check on Model fit, R squared change,
Descriptives, Part and partial correlations, and Collinearity diagnostics
and click on Continue.

5. Click on the Plots button and click over *ZRESID to the Y: box and
*ZPRED to the X:. under Standardized Residual Plots click on Histo-
gram and Normality probability plot and click Continue.

6. Click on the Save button. under Distances click Mahalanobis and click
Continue and click OK.

7. Save the results as Sequential-MRA-Results.

Multivariate Outlier Analysis

We are assessing the impact of two predictor variables on a dependent variable in
this study. We are concerned that participants may have combinations of extreme
scores on two or more variables that represent multivariate outliers. We use the

TABLE 12.1 Highest 6z-Scores for DSI, SPIPract, and SPIScient

Variable Highest 1z Outlier? .63.29 Highest 2z Outlier? .63.29

DSI 2.50291* No �2.01254 No

SPIPract 1.73182 No �2.74452 No

SPIScient 2.55536 No �1.86080 No

*This number is rounded to three decimals.

c12 18 June 2012; 20:32:27

410 � CHAPT ER 12



Mahalanobis distance values that were produced from our MRA commands
to determine if we have multivariate outliers. A new column in the Data View
called MAH_1 is comprised of Mahalanobis values. Also, the output has a
table called Residuals Statistics in which the largest Mahalanobis distance (maxi-
mum) is presented as 9.034 (see Table 12.2). We are going to compare the
Mahalanobis distance values (beginning with the largest) to a chi squared (χ2)
critical value to determine if any of the values are significant. To find theχ2 critical
value to compare to the Mahalanobis values we will need degrees of freedom
(df ) and alpha level. The df for this analysis is the number of predictor variables,
which is two, and the alpha we use is .001 (Tabachnick & Fidell, 2007).

Go to www.danielsoper.com. select Statistics Calculator. select Chi
Square Distribution. select Critical Chi Square Value Calculator.
type in 2 next to Degrees of freedom. type .001 next to Probability
level:. click on Calculate!

You see that χ2
:999 (2 df )¼ 13.81551056, rounded to 13.816. Any partici-

pant who has a Mahalanobis value that is equal to or greater than 13.816 is
considered to be a multivariate outlier. The largest Mahalanobis value is 9.03410,

TABLE 12.2 Largest (Maximum) Mahalanobis Distance Value

Residuals Statisticsa

Minimum Maximum Mean Std. Deviation N

Predicted value 146.66 194.07 174.98 10.630 120

Std. predicted value 22.664 1.797 .000 1.000 120

Std. error of predicted value 3.245 9.691 5.075 1.458 120

Adjusted predicted value 149.29 195.03 175.07 10.533 120

Residual 273.149 72.419 .000 33.105 120

Std. residual 22.191 2.169 .000 .992 120

Stud. residual 22.215 2.181 2.001 1.003 120

Deleted residual 274.740 73.325 2.097 33.900 120

Stud. deleted residual 22.253 2.217 2.002 1.010 120

Mahal. distance .132 9.034 1.983 1.851 120

Cook’s distance .000 .060 .008 .012 120

Centered leverage value .001 .076 .017 .016 120

aDependent variable: DSI.
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which is fairly close to but less than our criterion of 13.816, so we conclude that
there are no participants who have scores that reflect being a multivariate outlier.

General Screening of Correlation Coefficients

A look at the bivariate Pearson product-moment correlation coefficients between
the predictor variables and the dependent variable and just between the predictor
variables provides information on whether the multiple regression analysis is
suggesting the existence of a viable solution.

A correlation coefficient is an index of the relationship between and among
variables. A correlation coefficient between two variables is a bivariate correlation (r),
and it is designated with the symbol (r). A correlation coefficient representing a
relationship amongmore than two variables is called amultiple correlation (R). Values
for correlation coefficients (r) like the Pearson product-moment correlation range
from 21.0 to 11.0; however, multiple correlations (R) are only positive values.

A 21.0 reflects a perfect negative relationship. As the scores of one variable
increase, the other variable scores decrease at the same rate. A 0 reflects no cor-
relation; there is no consistent increase or decrease in scores between two or more
variables. A 11.0 reflects a perfect positive relationship. As the scores of variables
increase or decrease, the scores of other variables do the same at the same rate.

There are several useful ways to descriptively interpret correlation coefficients.
The strength of the correlation coefficient can be interpreted as low (#6.39),
moderate (between 6.40 and 6.69), and large ($6.70) (Grimm, 1993).

The coefficient of determination is obtained by squaring the bivariate corre-
lation (r2) or multiple correlation (R2), which is an index of the strength of the
relationship. The percentage of shared variance between two or more variables can
be obtained by calculating r2 3 100 or R2 3 100.

The coefficient of alienation is obtained by subtracting the coefficient of
determination from 1.0(1.02 r2 or 1.02R2), which is an index of unexplained
variance in the relationship. The percentage of unexplained variance is obtained by
1.02 (r2 3 100) or 1.02 (R2 3 100).

An illustration of these interpretation is: (1) r ¼ .40 is a moderate correlation,
(2) the coefficient of determination is r2¼ (.40)2¼ .16, (3) there is 16 percent
shared variance between the variables, (4) the coefficient of alienation is
(1.02 .16)¼ .84, and (5) the percentage of unexplained variance between the
variables is 84 percent.
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The row for Pearson Correlation—DSI in Table 12.3 shows the bivariate
correlations of the predictor variables to the dependent variable. We want
these correlations to show some degree of strength, which suggests that there may
be a meaningful solution when all the variables are combined in the MRA. The
correlations of the predictor variables to the dependent variable are belowmoderate
SPIScient and DSI (r¼2.302) and SPIPract and DSI (r¼ .104). However,
looking at the Sig. (1-tailed) DSI row, one of the predictors (SPIScient) reflects a
significant relationship (p¼ .000 or p, .05) with DSI. So, the MRA may reflect
a meaningful model that predicts dissertation stress. If all of the predictors were
very low and not significant, it is likely there would not be meaningful results from
the MRA.

It also is important to review the correlation coefficient between the predictor
variables. If any correlation between two predictor variables is around .70 (high),
that means that there is redundancy of information between the variables. The two
variables would appear to be measuring the same thing, and one of the variables
may not need to be in the combined variable solution. This is called multi-
collinearity when several redundant pairs of variables overly explain (r¼ .90) each
other and complicate meaningful interpretation of the actual relationships among
variables.

The bivariate correlation between the two predictor variables in Table 12.3 is
low (r ¼2.199). The r2¼ .040, so there is less than 4 percent shared variance
between the two variables. There is no indication of redundancy between the two
predictor variables.

TABLE 12.3 Bivariate Correlation Coefficients between the
Study Variables

Correlations

DSI SPIScient SPIPract

Pearson Correlation DSI 1.000 2.302 .104

SPIScient 2.302 1.000 2.199

SPIPract .104 2.199 1.000

Sig. (1-tailed) DSI . .000 .129

SPIScient .000 . .015

SPIPract .129 .015 .

N DSI 120 120 120

SPIScient 120 120 120

SPIPract 120 120 120

c12 18 June 2012; 20:32:28

BIVARIATE AND MULTIVARIATE CORRELATION METHODS USING MULTIPLE REGRESSION ANALYSIS � 413



Assessment of Multicollinearity and Singularity

The bivariate correlations do not seem to suggest the presence of redundancy
among the predictor variables. There are other measures used to directly assess
whether multicollinearity or singularity exist. Singularity is an extreme case of
multicollinearity when a predictor variable is perfectly predicted (61.0). The
presence of singularity is rare and usually a result of mistakes in data entry or analysis
such as using the same variable twice.

Tolerance is defined as (12 SMC) where SMC is a squared multiple corre-
lation (R2) and ranges from 0 to 1.0. The higher the SMC, the more redundancy
there is between variables and the lower the tolerance value will be. A lower SMC
reflects less redundancy and the tolerance will be higher. So, we want high tol-
erance values; multicollinearity is more of a concern if tolerance values are below
.20 and are more acceptable when they are above .50.

The reciprocal (opposite) of tolerance is the variance inflation factor (VIF).
The VIF is obtained by dividing 1 by tolerance, so we want VIF values to be low,
which is opposite of tolerance values that we want high. Variance inflation factors
are of more concern when they are greater than 10 and most acceptable when
they are less than 5.

Looking at the collinearity results in Table 12.4, the tolerance values are high,
1.00 in Model 1 (SPIScient only) and .960 in Model 2 (SPIScient and SPIPract).
These tolerance values are much higher than criteria of ..20 or ..50, so the
evidence does not support the presence of multicollinearity. This finding
is supported by the low VIF values of 1.00 in Model 1 (SPIScient only) and
1.041 in Model 2 (SPIScient and SPIPract), which are considerably lower than

TABLE 12.4 Multicollinearity Measures of Tolerance
and Variance Inflation Factor (VIF)

Coefficientsa

Collinearity Statistics

Model Tolerance VIF

1 SPIScient 1.000 1.000

2 SPIScient .960 1.041

SPIPract .960 1.041

aDependent variable: DSI.

c12 18 June 2012; 20:32:28

414 � CHAPT ER 12



,5 or ,10. We conclude that there is no presence of severe redundancy among
the predictor variables. Parenthetically, the two tolerance values in Model 2 and
the VIF values are the same. This is true because there are only two predictor
variables in the model that are being analyzed with each other twice. There would
be different tolerance and VIF values if there were more than two predictor
variables in the model. One predictor variable would be compared to all other
predictor variables in the model.

Assessment of Normality, Linearity, and Homoscedasticity
of Residuals

Weare going to analyze residuals to assess normality, linearity, and homoscedasticity.
Residuals represent error variances of prediction, which are differences between
obtained and predicted dependent variable scores. Residuals are the portion of the
score on the dependent variable that is not explained by the predictor variable.
In order to use MRA, it is assumed that the residuals have normal distributions
(normality), and a straight-line relationship (linearity) with predicted dependent
variable scores. Also, the variance of the residuals related to the dependent variable
scores is consistent for all the predicted scores (homoscedasticity).

The normal distribution of residuals can be assessed from the histogram
in Figure 12.2. The residuals appear reasonably symmetrical and within the
superimposed normal distribution outline. Also, the P-P (probability-probability)
plot in Figure 12.3 is interpreted similarly to Q-Q plots where we want the points
on or close to the graph line. This shows that the observed cumulative probability
of the residuals is congruent with the expected cumulative probability of the
residuals.

The residual scatter plot in Figure 12.4 provides information about normality,
linearity, and homoscedasticity. Normality is indicated when there is an accumu-
lation of residuals in the center of the plot in relation to each value of the predicted
score, with residuals trailing off symmetrically from the center (Tabachnick &
Fidell, 2007). There is more of a concentration of residuals in themiddle of the plot,
and they disperse from the center somewhat evenly in smaller numbers.

The variance of residuals about the predicted dependent variable scores is the
same for all predicted scores when homoscedasticity exists. Visualize a band
around the residuals, and the residuals should be approximately equal in width at
all values of the predicted dependent variable. The residuals do appear to be
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approximately equal in width at the values of the regression standardized pre-
dicted values on the abscissa.

When residuals have a straight-line relationship with predicted DV scores,
then the linearity exists, which is desired. The band surrounding the residual
scatter plot will approximate the form of a rectangle. If the band around the
residuals is a shape other than a straight line, such as a U shape, then variables or
combinations of variables may have curvilinear relationships with the dependent
variable, and then linear MRA may not be the best choice for analysis. No
curvilinear relationship of residuals is evident in the scatter plot, and a rectangular
shape surrounding the residuals can be visualized. Evidence suggests that the
assumptions of normality, homoscedasticity, and linearity have been met.

FIGURE 12.2 Histogram of Residuals of DSI Predicted by SPIScient
and SPIPract
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Sequential Multiple Regression Analysis

The results of the sequential MRA are in the Sequential-MRA-Results output.
Initially, we interpret the Model Summary table (see Table 12.5) The first row
is Model 1 and has one predictor variable (SPIScient) predicting DSI. The
multiple correlation is R¼ .302, showing that the model with SPIScient has a
moderate correlation to DSI. Model 1 has only two variables (SPIScient and DSI)
that should produce a similar correlation coefficent to the bivariate correlation in
Table 12.3, with one important difference: a minus value reflecting an inverse
relationship between the two variables; the bivariate correlation is r¼2.302. A
multiple correlation coefficient (R) is always a positive value, so it is essential to
refer to the bivariate correlation coefficients table to see what direction (positive or
negative) the relationship is between pairs of variables.

FIGURE 12.3 Normal P-P Plot of Residuals of DSI Predicted
by SPIScient and SPIPract
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The R-squared (R2) value¼ .091[(SSregression/SStotal) or (.302)
2], showing that

9.10 percent of the variability in higher dissertation stress can be explained by
lower interest in scientific activities. We know that SPIScient and DSI have an
inverse relationship, because the bivariate correlation between SPIScient and DSI
is 2.302. We also know that high scores on DSI translate to higher dissertation
stress and low scores on SPIScient mean lower interest in scientific activities.

The adjusted R2¼ .084[1 2 (SSResid./SSTot.)(dfTot./dfResid.)] corrects the R
2 to be

a better estimate of howwell themodel fits the population parameters. The adjustedR2

is more conservative and is lower than the R2.
The standard error of the estimate (SEE) (Sqrt of SSresidual/N2 # of predictor

variables2 1) is the standard deviation of the residuals (prediction errors). The
moderate correlation of the predictor variable to the dependent variable is not
perfect (61.0). The standard error of estimate (SEE) is an index of how far off our
prediction is. The larger the SEE value, the less confident we are in prediction.

FIGURE 12.4 Scatter Plot of Residuals of DSI Predicted by SPIScient
and SPIPract
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TABLE 12.5 Model Summary of Sequential MRA

Model Summarya

Change Statistics

Model R R-Squared
Adjusted
R-Squared

Std. Error of
Estimate

R-Squared
Change F Change df1 df2

Sig. F
Change

1 .302b .091 .084 33.281 .091 11.880 1 118 .001

2 .306c .093 .078 33.386 .002 .258 1 117 .612

aDependent variable: DSI.
bPredictors: (Constant), SPIScient.
cPredictors: (Constant), SPIScient, SPIPract.
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According to Norusis (2005), the SEE should be considerably lower than the
standard deviation of the dependent variable for a successful regression model.

The R-squared change value (R2
change ¼ :091) represents the amount of change

to the model’s R2 when a variable is added to the previous model. In this situation,
this is Model 1 and there was no previous model, so the R2

change ¼ :091 is the same

as R2¼ .091. The F change value¼ 11.880 is a statistical F-test assessing whether
the R2

change in themodel is a significant addition to themodel. The assessment of the

F change results in a Sig. F change ¼ .001, which is significant, p, .05.
Model 2 combines both SPIScient and SPIPract as a multiple correlation to

DSI. The multiple correlation is R¼ .306, reflecting moderate relationships
among the two predictor variables (or independent variables) and one criterion
variable (or dependent variable). The R2¼ .093 and the R2

change ¼ :002 by adding

the new variable, SPIPract, in Model 2. This small amount of R2
change was not

significant F change¼ .258, with a Sig. F change¼ .612, p. .05.
In theANOVA table (seeTable 12.6), the information relates to testing the null

hypotheses that the population value for themultiple R is 0 in eachmodel using the
F test of the model. The regression sum of squares is variability explained by the
regression, and the residual sum of squares is variability not explained by
the regression. The total sum of squares is the total of the two. We want to compare
the Sig. value of the F ratio (MSRegres./MSResid.) to our α¼ .05 to determine if we
reject the null hypothesis. In Model 1, the significance (Sig.) value of .001 is
less than the α¼ .05, so we reject the null that the population value for multiple

TABLE 12.6 Analysis of Variance of the Two Sequential MRA Models

ANOVAa

Model Sum of Squares df Mean Square F Sig.

1 Regression 13,158.483 1 13,158.483 11.880 .001b

Residual 130,702.442 118 1,107.648

Total 143,860.925 119

2 Regression 13,446.116 2 6,723.058 6.032 .003c

Residual 130,414.809 117 1,114.656

Total 143,860.925 119

aDependent variable: DSI.
bPredictors: (Constant), SPIScient.
cPredictors: (Constant), SPIScient, SPIPract.
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R is 0. There R¼ .302 represents a significant correlation, F(1, 118)¼ 11.880,
p, .05. Model 2 has both predictor variables (SPIScient and SPIPract) predicting
DSI, and it also reflects a significant model, F(2, 117)¼ 6.032, p, .05.

The significance of individual predictors on dissertation stress is assessed next
(see Table 12.7). The constant is the intercept, which is the expected value of the
dependent variable when all the independent variables are zero. The unstan-
dardized beta coefficient (B) is an estimate of the likely change in the dependent
variable for each one-unit change in the predictor variable. The unstandardized
beta coefficient values are scaled in the original metric of the variables used. The
unstandardized beta coefficient is also referred to as the regression coefficient.
The Std. Error (standard error of the estimate) is a value that estimates the
standard deviation of the dependent variable for any value of the predictor var-
iable. It is a standard deviation of residuals (Norusis, 1999).

The standardized beta coefficient (beta weight) (β) is a regression coefficient for a
sample expressed in standard deviation units (i.e., z-scores). The mean is 0 and the
standard deviation is 1. The standardized beta coefficient indicates the change in
the dependent variable for each one standard deviation change in the predictor
variable. So scores are reported as standard scores on IVs rather than using the
original metric. These beta weights allow for easier comparisons of the relative
influence of other PVs used in the regression. Standardized beta coefficients provide
guidance as to the relative importance of predictor variables in themodel—however,
not in an absolute sense because they are contingent on the other PVs in the model.

The t-statistic is a test of significance to determine if the coefficients for
individual variables are different from 0. Each variable is tested for significant
contribution in the model.

An examination of the significance of the standardized beta coefficient
SPIScient to DSI in Model 1 shows that it is significant, β¼2.302, t(118)¼
23.447, p¼ .001 (p, .05). You notice that the β¼2.302 is equal to
r¼2.302. Standardized regression coefficients and correlation coefficients are
the same when one predictor variable is used with the dependent variable. When
we have more than one predictor variable used with a dependent variable, the
regression and correlation coefficients are no longer equal.

Model 2 has SPIPract added to SPIScient to predict DSI. Again, SPIScient
is significant, β¼2.293, t(117)¼23.266, p¼ .001 (p, .05). However, SPI-
Pract is not a significant predictor variable with SPIScient of DSI, β¼ .046,
t(117)¼ .508, p¼ .612 (p. .05).
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TABLE 12.7 Significance Values of Each Predictor Variable

Coefficientsa

Unstandardized Coefficients
Standardized
Coefficients

95% Confidence
Interval for B

Model B Std. Error Beta t Sig.
Lower
Bound

Upper
Bound

1 (Constant) 213.510 11.586 18.429 .000 190.567 236.453

SPIScient 2.654 .190 2.302 23.447 .001 21.030 2.278

2 (Constant) 202.345 24.862 8.139 .000 153.107 251.584

SPIScient 2.634 .194 2.293 23.266 .001 21.019 2.250

SPIPract .132 .259 .046 .508 .612 2.381 .644

aDependent variable: DSI.
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The 95 percent confidence interval for B (unstandardized coefficients) tells us
that the probability is .95 that the intervals obtained in this way encompass the
true value of B.

It is evident that Model 1 is the best model. It contains the interests in science
variable (SPIScient), which is the only predictor that is significantly predicting
dissertation stress (DSI) and in an inverse relationship. Practitioner interests do
not significantly predict dissertation stress.

HAND CALCULATIONS OF STATISTICS

Several analyses are calculated next to show the equations used in obtaining
results in the multiple regression example. The first analysis is to calculate the
Pearson product-moment correlation coefficient.

Pearson Product-Moment Correlation Coefficient

The formula of the Pearson product-moment correlation coefficient that we will
be using follows.

rXY ¼ ΣXY � ðΣX ÞðΣY Þ=N
Sqrt½ΣX 2 � ðΣX Þ2=N �½ΣY 2 � ðΣY Þ2=N �

SPIScient and DSI Pearson Product-Moment Correlation

The data used to calculate the Pearson product-moment correlation for SPI-
Scient and DSI are presented next. The data are followed by the correlation
calculations.

ID# YDSI XSc XY X2 Y2

1 107 58 6,206 3,364 11,449

2 183 35 6,405 1,225 33,489

3 125 62 7,750 3,844 15,625

(Continued)
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ID# YDSI XSc XY X2 Y2

4 130 43 5,590 1,849 16,900

5 170 29 4,930 841 28,900

6 203 51 10,353 2,601 41,209

7 212 44 9,328 1,936 44,944

8 177 34 6,018 1,156 31,329

9 174 38 6,612 1,444 30,276

10 105 57 5,985 3,249 11,025

11 110 46 5,060 2,116 12,100

12 162 69 11,178 4,761 26,244

13 150 70 10,500 4,900 22,500

14 161 70 11,270 4,900 25,921

15 155 64 9,920 4,096 24,025

16 205 55 11,275 3,025 42,025

17 221 32 7,072 1,024 48,841

18 139 66 9,174 4,356 19,321

19 132 92 12,144 8,464 17,424

20 204 80 16,320 6,400 41,616

21 188 32 6,016 1,024 35,344

22 232 69 16,008 4,761 53,824

23 203 76 15,428 5,776 41,209

24 191 60 11,460 3,600 36,481

25 230 50 11,500 2,500 52,900

26 244 63 15,372 3,969 59,536

27 167 74 12,358 5,476 27,889

28 203 58 11,774 3,364 41,209

29 155 57 8,835 3,249 24,025

30 244 47 11,468 2,209 59,536

31 205 52 10,660 2,704 42,025

32 193 53 10,229 2,809 37,249

33 262 32 8,384 1,024 68,644

34 166 38 6,308 1,444 27,556

35 139 70 9,730 4,900 19,321

36 215 65 13,975 4,225 46,225

37 188 49 9,212 2,401 35,344

38 167 41 6,847 1,681 27,889

39 120 84 10,080 7,056 14,400

40 224 52 11,648 2,704 50,176

41 141 72 10,152 5,184 19,881

42 141 86 12,126 7,396 19,881

43 186 63 11,718 3,969 34,596

44 135 39 5,265 1,521 18,225

c12 18 June 2012; 20:32:32

424 � CHAPT ER 12



ID# YDSI XSc XY X2 Y2

45 203 45 9,135 2,025 41,209

46 219 58 12,702 3,364 47,961

47 232 72 16,704 5,184 53,824

48 181 72 13,032 5,184 32,761

49 153 65 9,945 4,225 23,409

50 148 66 9,768 4,356 21,904

51 195 89 17,355 7,921 38,025

52 199 47 9,353 2,209 39,601

53 189 76 14,364 5,776 35,721

54 161 72 11,592 5,184 25,921

55 159 78 12,402 6,084 25,281

56 190 71 13,490 5,041 36,100

57 183 67 12,261 4,489 33,489

58 112 100 11,200 10,000 12,544

59 200 61 12,200 3,721 40,000

60 170 44 7,480 1,936 28,900

61 140 63 8,820 3,969 19,600

62 139 50 6,950 2,500 19,321

63 203 60 12,180 3,600 41,209

64 191 50 9,550 2,500 36,481

65 165 55 9,075 3,025 27,225

66 129 34 4,386 1,156 16,641

67 232 36 8,352 1,296 53,824

68 173 68 11,764 4,624 29,929

69 206 61 12,566 3,721 42,436

70 225 63 14,175 3,969 50,625

71 183 73 13,359 5,329 33,489

72 218 46 10,028 2,116 47,524

73 184 42 7,728 1,764 33,856

74 126 53 6,678 2,809 15,876

75 152 90 13,680 8,100 23,104

76 153 42 6,426 1,764 23,409

77 118 46 5,428 2,116 13,924

78 176 39 6,864 1,521 30,976

79 197 61 12,017 3,721 38,809

80 179 69 12,351 4,761 32,041

81 151 74 11,174 5,476 22,801

82 144 81 11,664 6,561 20,736

83 147 73 10,731 5,329 21,609

(Continued)
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ID# YDSI XSc XY X2 Y2

84 215 36 7,740 1,296 46,225

85 146 45 6,570 2,025 21,316

86 193 37 7,141 1,369 37,249

87 215 51 10,965 2,601 46,225

88 179 65 11,635 4,225 32,041

89 165 68 11,220 4,624 27,225

90 173 77 13,321 5,929 29,929

91 207 45 9,315 2,025 42,849

92 134 50 6,700 2,500 17,956

93 206 39 8,034 1,521 42,436

94 191 46 8,786 2,116 36,481

95 214 66 14,124 4,356 45,796

96 139 67 9,313 4,489 19,321

97 120 86 10,320 7,396 14,400

98 196 53 10,388 2,809 38,416

99 128 54 6,912 2,916 16,384

100 169 86 14,534 7,396 28,561

101 182 51 9,282 2,601 33,124

102 203 66 13,398 4,356 41,209

103 159 52 8,268 2,704 25,281

104 128 96 12,288 9,216 16,384

105 183 68 12,444 4,624 33,489

106 182 59 10,738 3,481 33,124

107 127 78 9,906 6,084 16,129

108 177 66 11,682 4,356 31,329

109 163 65 10,595 4,225 26,569

110 164 55 9,020 3,025 26,896

111 123 45 5,535 2,025 15,129

112 165 87 14,355 7,569 27,225

113 208 38 7,904 1,444 43,264

114 236 53 12,508 2,809 55,696

115 160 32 5,120 1,024 25,600

116 202 48 9,696 2,304 40,804

117 153 70 10,710 4,900 23,409

118 202 42 8,484 1,764 40,804

119 193 52 10,036 2,704 37,249

120 108 87 9,396 7,569 11,664

ΣY¼20,997 ΣX¼7,070 ΣXY ¼ 1,216,955 ΣX2¼447,300 ΣY2¼3,817,811
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rXY ¼ ΣXY � ðΣX ÞðΣY Þ=N
Sqrt½ΣX 2 � ðΣX Þ2=N �½ΣY 2 � ðΣY Þ2=N �

¼ 1,216,955� ð7,070Þð20,997Þ=120
Sqrt½447,300� ð7,070Þ2=120�½3,817,811� ð20,997Þ2=120�

¼ 1,216,955� 1,237,073
Sqrt½447,300� 416,541�½3,817,811� 3,673,950�

¼ �20,118
Sqrtð30,759Þð143,861Þ

¼ �20,118
Sqrt 4,425,020,499

¼ �20,118=66,521

rXY ¼ �:302

SPIPract and DSI Pearson Product-Moment Correlation

ID# YDSI XSc XY X2 Y2

1 107 72 7,704 5,184 11,449

2 183 87 15,921 7,569 33,489

3 125 86 10,750 7,396 15,625

4 130 81 10,530 6,561 16,900

5 170 77 13,090 5,929 28,900

6 203 94 19,082 8,836 41,209

7 212 84 17,808 7,056 44,944

8 177 90 15,930 8,100 31,329

9 174 70 12,180 4,900 30,276

10 105 91 9,555 8,281 11,025

11 110 70 7,700 4,900 12,100

12 162 95 15,390 9,025 26,244

13 150 84 12,600 7,056 22,500

14 161 69 11,109 4,761 25,921

15 155 81 12,555 6,561 24,025

16 205 80 16,400 6,400 42,025

17 221 85 18,785 7,225 48,841

(Continued)
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ID# YDSI XSc XY X2 Y2

18 139 80 11,120 6,400 19,321

19 132 75 9,900 5,625 17,424

20 204 81 16,524 6,561 41,616

21 188 65 12,220 4,225 35,344

22 232 67 15,544 4,489 53,824

23 203 74 15,022 5,476 41,209

24 191 95 18,145 9,025 36,481

25 230 93 21,390 8,649 52,900

26 244 70 17,080 4,900 59,536

27 167 70 11,690 4,900 27,889

28 203 72 14,616 5,184 41,209

29 155 89 13,795 7,921 24,025

30 244 88 21,472 7,744 59,536

31 205 97 19,885 9,409 42,025

32 193 82 15,826 6,724 37,249

33 262 71 18,602 5,041 68,644

34 166 88 14,608 7,744 27,556

35 139 79 10,981 6,241 19,321

36 215 75 16,125 5,625 46,225

37 188 83 15,604 6,889 35,344

38 167 70 11,690 4,900 27,889

39 120 82 9,840 6,724 14,400

40 224 74 16,576 5,476 50,176

41 141 56 7,896 3,136 19,881

42 141 43 6,063 1,849 19,881

43 186 89 16,554 7,921 34,596

44 135 94 12,690 8,836 18,225

45 203 85 17,255 7,225 41,209

46 219 70 15,330 4,900 47,961

47 232 72 16,704 5,184 53,824

48 181 92 16,652 8,464 32,761

49 153 78 11,934 6,084 23,409

50 148 76 11,248 5,776 21,904

51 195 87 16,965 7569 38,025

52 199 67 13,333 4,489 39,601

53 189 72 13,608 5,184 35,721

54 161 52 8,372 2,704 25,921

55 159 73 11,607 5,329 25,281

56 190 89 16,910 7,921 36,100

57 183 73 13,359 5,329 33,489

58 112 59 6,608 3,481 12,544

59 200 68 13,600 4,624 40,000
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ID# YDSI XSc XY X2 Y2

60 170 79 13,430 6,241 28,900

61 140 68 9,520 4,624 19,600

62 139 58 8,062 3,364 19,321

63 203 91 18,473 8,281 41,209

64 191 89 16,999 7,921 36,481

65 165 93 15,345 8,649 27,225

66 129 63 8,127 3,969 16,641

67 232 78 18,096 6,084 53,824

68 173 50 8,650 2,500 29,929

69 206 85 17,510 7,225 42,436

70 225 65 14,625 4,225 50,625

71 183 81 14,823 6,561 33,489

72 218 71 15,478 5,041 47,524

73 184 89 16,376 7,921 33,856

74 126 77 9,702 5,929 15,876

75 152 71 10,792 5,041 23,104

76 153 68 10,404 4,624 23,409

77 118 64 7,552 4,096 13,924

78 176 92 16,192 8,464 30,976

79 197 67 13,199 4,489 38,809

80 179 84 15,036 7,056 32,041

81 151 64 9,664 4,096 22,801

82 144 77 11,088 5,929 20,736

83 147 78 11,466 6,084 21,609

84 215 58 12,470 3,364 46,225

85 146 71 10,366 5,041 21,316

86 193 80 15,440 6,400 37,249

87 215 73 15,695 5,329 46,225

88 179 79 14,141 6,241 32,041

89 165 87 14,355 7,569 27,225

90 173 77 13,321 5,929 29,929

91 207 77 15,939 5,929 42,849

92 134 83 11,122 6,889 17,956

93 206 64 13,184 4,096 42,436

94 191 90 17,190 8,100 36,481

95 214 62 13,268 3,844 45,796

96 139 72 10,008 5,184 19,321

97 120 58 6,960 3,364 14,400

98 196 90 17,640 8,100 38,416

99 128 64 8,192 4,096 16,384

100 169 46 7,774 2,116 28,561

(Continued)
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ID# YDSI XSc XY X2 Y2

101 182 62 11,284 3,844 33,124

102 203 83 16,849 6,889 41,209

103 159 88 13,992 7,744 25,281

104 128 90 11,520 8,100 16,384

105 183 82 15,006 6,724 33,489

106 182 85 15,470 7,225 33,124

107 127 97 12,319 9,409 16,129

108 177 57 10,089 3,249 31,329

109 163 57 9,291 3,249 26,569

110 164 86 14,104 7,396 26,896

111 123 91 11,193 8,281 15,129

112 165 62 10,230 3,844 27,225

113 208 58 12,064 3,364 43,264

114 236 77 18,172 5,929 55,696

115 160 76 12,160 5,776 25,600

116 202 80 16,160 6,400 40,804

117 153 79 12,087 6,241 23,409

118 202 72 14,544 5,184 40,804

119 193 64 12,352 4,096 37,249

120 108 43 4,644 1,849 11,664

ΣY¼20,997 ΣX¼9,133 ΣXY¼ 1,603,236 ΣX2¼712,415 ΣY2¼3,817,811

rXY ¼ ΣXY � ðΣX ÞðΣY Þ=N
Sqrt½ΣX 2 � ðΣX Þ2=N �½ΣY 2 � ðΣY Þ2=N �

¼ 1,603,236� ð9,133Þð20,997Þ=120
Sqrt½712,415� ð9,133Þ2=120�½3,817,811� ð20,997Þ2=120�

¼ 1,603,236� 1,598,047
Sqrt½712,415� 695,097�½3,817,811� 3,673,950�

¼ 5,189
Sqrt½17,318�½143,861�

¼ 5,189
Sqrt 2,491,384,798

¼ 5,189=49,914

rXY ¼ :104
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Next, a summary table of data is presented that is used for hand calculations
of other formulas for the sequential MRA (see Table 12.8).

Partial Regression Coefficients

b1¼
ry1 � ry2r12ðsy=s1Þ

1� r212

SPIScient and DSI

b1¼ �:302� ð:104Þð�:199Þ
1� ð�:199Þ2

ð34:769Þ
ð16:077Þ

¼ �:302� ð�:021Þ
1� :040

ð2:163Þ

¼ ð�:281=:96Þð2:163Þ
¼ �:293ð2:163Þ

b1¼ �:634

SPIPract and DSI

b2¼ :104� ð�:302Þð�:199Þ
1� ð�:199Þ2

ð34:769Þ
ð12:063Þ

¼ :104� ð:060Þ
1� :040

ð2:882Þ

¼ ð:044=:96Þð2:882Þ
¼ :046ð2:882Þ

b2¼ :1326

TABLE 12.8 Matrix of Correlation Coefficients, Means,
and Standard Deviations

SPIScient SPIPract DSI

SPIScient 1

SPIPract 2.199 1

DSI 2.302 .104 1

Mean 58.92 76.11 174.98

SD 16.077 12.063 34.769
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Squared Multiple Correlation for Model 2

R2 ¼ r2y1 þ r2y2 � 2ry1ry2r12
1� r212

¼ :091þ :011� 2ð�:302Þð:104Þð�:199Þ
1� ð�:199Þ2

¼ :102� :013
1� :040

¼ :089=:96

R2 ¼ :093

Significance of R2 Using Analysis of Variance for Model 2

F ¼ ðN � p� 1ÞR2

pð1� R2Þ

where N ¼ number of score

p ¼ number of predictor variables

F ¼ ð120� 2� 1Þ:093
2ð1� :093Þ

¼ ð117Þ:093
2ð:907Þ

¼ 10:88=1:81

F ¼ 6:0

F-Test of Change in R2

Fchange¼ sr2i
ð1� R2Þ=dfres
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where sr2 ¼ squared semiparital correlation of the added variable in Model 2
to the variable in Model 1. The sr2 is obtained by ðR2

Model 1 � R2
Model 2Þ.

R2 ¼ squared multiple correlation of Model 2

dfres ¼ residual degrees of freedom for Model 2

Fchange ¼ :002
1� :093=117

¼ :002
:907=117

¼ :002=:00775

Fchange ¼ :258

Study Results

The purpose of this study was to assess whether doctoral students’ lower interests
in scientist activities more highly predict greater dissertation stress when com-
pared to their interests in practitioner activities. A national sample of 120 doctoral
students in counselor education, counseling psychology, and clinical psychology
programs was studied.

The two predictor variables used in the study were identified from anecdotal
experiences of faculty and a limited number of studies. Both interests in scientist
and practitioner activities were measured using the Scientist Practitioner
Inventory. The Dissertation Stress Inventory was used to measure the depen-
dent variable and assesses perceived stress related to completing the doctoral
dissertation.

An a priori power analysis was conducted that showed that a total sample size
of 101 was needed to reach a .80 power. The a priori power criterion was met
using an α¼ .05, a priori effect size of R2(ρ2)¼ .09, and a planned sample size of
120 participants.

No missing values and univariate or multivariate outliers were found in the
data set. Moreover, multicollinearity was not present, and normality, linearity,
and homoscedasticity of residuals were all within acceptable ranges.

A sequential multiple regression analysis was conducted. The bivariate cor-
relations of the predictor variables to the dependable variable of dissertation stress
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were: (1) SPIScient and DSI (r¼2.302, p, .05) and (2) SPIPract and DSI
(r¼ .104, p. .05).

Model 1 of the sequential MRA included the SPI Scientist scale only,
and it was a significant predictor variable of DSI, R¼ .302, F(1, 118)¼ 11.880,
p, .05. Then, the SPI Practitioner variable was added to the SPI Scientist
variable, resulting in a significant Model 2. However, the SPI Practitioner
variable added little to the model and was not significantly contributing to
the model, ΔR2¼ .002, F(1, 117)¼ .258, p. .05.

The findings indicate that lower interests in scientist activities of doctoral
students in counseling and clinical psychology programs significantly predicted
higher perceived dissertation stress, β¼2.293, t(118)¼23.266, p, .05.
Moreover, the relationship of interests in practitioner activities did not significantly
predict dissertation stress, β¼ .046, t(118)¼ .508, p. .05. The alternative
hypothesis was supported; lower interest in scientific activities was a better predictor
of higher dissertation stress reported by counseling and clinical psychology doctoral
students when compared to their interests in practitioner activities.

SUMMARY

Correlation research methods were covered in this chapter to assess relationships
and predictions among variables. The steps of the hypothesis-testing process were
applied to a research problem using bivariate correlations and sequential multiple
regression analysis. Data are provided in Table 12.9 to conduct the several
analyses related to this bivariate and multivariate correlation research problem.

PROBLEM ASSIGNMENT

The steps involved in conducting a sequential MRA using IBM SPSS have been
presented in this chapter. Now it is your turn to independently work through the
steps of the hypothesis-testing process related to a sequential MRA using IBM
SPSS. Go to the companion website and you will find a new sequential MRA
research problem and data set along with a worksheet to complete. Use the
problem presented in this chapter as a guide so you can complete the assignment.
Your instructor will evaluate your completed worksheet when it is finished.
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TABLE 12.9 Sequential MRA Data

ID# DSI SPIScient SPIPract

1 107 58 72

2 183 35 87

3 125 62 86

4 130 43 81

5 170 29 77

6 203 51 94

7 212 44 84

8 177 34 90

9 174 38 70

10 105 57 91

11 110 46 70

12 162 69 95

13 150 70 84

14 161 70 69

15 155 64 81

16 205 55 80

17 221 32 85

18 139 66 80

19 132 92 75

20 204 80 81

21 188 32 65

22 232 69 67

23 203 76 74

24 191 60 95

25 230 50 93

26 244 63 70

27 167 74 70

28 203 58 72

29 155 57 89

30 244 47 88

31 205 52 97

32 193 53 82

33 262 32 71

34 166 38 88

35 139 70 79

36 215 65 75

37 188 49 83

38 167 41 70

39 120 84 82

(Continued)

c12 18 June 2012; 20:32:38

BIVARIATE AND MULTIVARIATE CORRELATION METHODS USING MULTIPLE REGRESSION ANALYSIS � 435



TABLE 12.9 Sequential MRA Data (Continued)

ID# DSI SPIScient SPIPract

40 224 52 74

41 141 72 56

42 141 86 43

43 186 63 89

44 135 39 94

45 203 45 85

46 219 58 70

47 232 72 72

48 181 72 92

49 153 65 78

50 148 66 76

51 195 89 87

52 199 47 67

53 189 76 72

54 161 72 52

55 159 78 73

56 190 71 89

57 183 67 73

58 112 100 59

59 200 61 68

60 170 44 79

61 140 63 68

62 139 50 58

63 203 60 91

64 191 50 89

65 165 55 93

66 129 34 63

67 232 36 78

68 173 68 50

69 206 61 85

70 225 63 65

71 183 73 81

72 218 46 71

73 184 42 89

74 126 53 77

75 152 90 71

76 153 42 68

77 118 46 64

78 176 39 92

79 197 61 67

80 179 69 84
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ID# DSI SPIScient SPIPract

81 151 74 64

82 144 81 77

83 147 73 78

84 215 36 58

85 146 45 71

86 193 37 80

87 215 51 73

88 179 65 79

89 165 68 87

90 173 77 77

91 207 45 77

92 134 50 83

93 206 39 64

94 191 46 90

95 214 66 62

96 139 67 72

97 120 86 58

98 196 53 90

99 128 54 64

100 169 86 46

101 182 51 62

102 203 66 83

103 159 52 88

104 128 96 90

105 183 68 82

106 182 59 85

107 127 78 97

108 177 66 57

109 163 65 57

110 164 55 86

111 123 45 91

112 165 87 62

113 208 38 58

114 236 53 77

115 160 32 76

116 202 48 80

117 153 70 79

118 202 42 72

119 193 52 64

120 108 87 43
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KEY TERMS

adjusted R2

bivariate correlation (r)

bivariate relationships

coefficient of alienation

coefficient of determination

constant

cumulative probability of the residuals

F change

homoscedasticity

linearity

Mahalanobis distance values

multicollinearity

multiple correlation (R)

multiple relationships

multivariate outliers

normal distribution of residuals

percentage of shared variance

percentage of unexplained variance

predictor variables (PVs)

redundancy of information

regression sum of squares

residuals

residual sum of squares

R-squared (R2)

R-squared change

sequential MRA (hierarchical MRA)

sequential multiple linear regression

Sig. F change

singularity

standard error of the estimate (SEE)

standardized beta coefficient

(beta weight) (β)

standard MRA (simultaneous MRA)

statistical MRA (stepwise MRA)

strength of the correlation

tolerance

total sum of squares

t-statistic

unstandardized beta coefficient (B)

variance inflation factor (VIF)
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Chapter 13

UNDERSTANDING

QUANTITATIVE LITERATURE

AND RESEARCH

LEARNING OBJECTIVES

� Learn guidelines to interpret quantitative research articles
in the professional literature.

� Apply the interpretation guidelines to a quantitative
research article.
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I t is essential for members of a professional discipline to understand the pur-
pose of methods and the meaning of results from quantitative research.
Learning and applying guidelines for interpreting quantitative research is the

focus of this chapter. We will use the information learned in the previous chapters
to analyze a published research article. We will be interpreting the methods and
findings of the research article but not evaluating the research as to weaknesses
and strengths of the study. Research consumers need first to understand fully
what happened in a study before they are in a position to coherently evaluate a
study. Initially, you are asked to read a guide to interpret research developed
by Gay (1976). Then you will retrieve and read a specified article. Finally, you
will apply knowledge that you have learned from previous chapters and the
consumer guide.

INTERPRETATION OF A QUANTITATIVE
RESEARCH ARTICLE

Retrieve and read the article that will be used for interpretation: Steele, K. M.,
Bass, K. E., & Crook, M. D. (1999). The mystery of the Mozart effect: Failure to
replicate. Psychological Science, 10, 366�369.

Then, read through the following interpretation of the article. The discussion
items used to organize the interpretation of the article were drawn for the
most part from the Research Interpretation for Consumers Guide of Professor
Dennis Gay.

1. Identify the theme of the study. What is the basic idea, subject, topic, or
argument of the study? The theme usually can be identified from the title,
abstract, and purpose statement of an article.

The title provides clear thematic information with the words “the mystery of
the Mozart effect” and “failure to replicate.” The abstract indicates that several
laboratories have been unable to replicate the existence of a Mozart effect. The
purpose statement says, “to confirm the existence of the Mozart effect” by fol-
lowing the recommendations of the initial researchers. The theme of the research
article is to determine whether the Mozart effect has a real effect on spatial rea-
soning, and if it does not, whether there is another explanation for the Mozart
effect.
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2. What is the significance of this study? Why is the study important? Has
previous research on this topic been done? If so, what more is being contributed
by this study? Will the findings of this study impact theory, knowledge, or
practice? This information is usually found in the introduction and discussion
sections of an article.

The original researcher of the Mozart effect reported that the hypothesis that
musical experience of short duration can have a direct causal influence on spatial
reasoning on both a short-term and a long-term basis is important for both practical
and theoretical reasons. The expansion of teaching interventions to improve cog-
nitive development would be astounding if an aspect of measured intelligence can be
increased by listening to Mozart’s music. In fact, an industry associated with the
Mozart effect has been developed and can be found readily on the web.

3. How does this study relate to previous research? How does this research
emanate from and add to key conceptual and methodological issues in the field
related to the topic? This information is found in the introduction and discussion
sections. A brief summary of the previous research is presented next using
information from the article.

� Rauscher, Shaw, and Ky (1993) found Mozart increased spatial reasoning
by eight or nine IQ points as measured by portions of the Stanford-Binet
Intelligence Scale, Fourth Edition, after listening to 10 minutes of a
Mozart sonata. The effect was temporary and disappeared in 10 to 15
minutes.

� Rauscher, Shaw, and Ky (1995) reported findings related to replicating the
effect.

� Fifteen other research laboratories could not confirm the findings of
Rauscher et al.

� Rauscher et al. reviewed some of the negative results of the researchers
from other laboratories and recommended key components necessary to
produce a Mozart effect.
� Use an appropriate DV (paper folding and cutting items [PF&C]).

� Tend to the order of presentation of the listening and task conditions.

� Increase the time between pretest and treatment so there are no carry-
over effects.
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RESEARCH INTERPRETATION FOR CONSUMERS

The following guide is intended as a practice device for

the interpretation of published research in education and the

behavioral sciences.

I. The Initial Exposure

The initial exposure to a research study should begin by

reading the entire study with a rather casual, relaxed approach

with little attention to given details. The objective at this point

is to gain a general overview. As one progresses through the

five guidelines that follow, more and more attention to detail

will become necessary; however, one should not stop and spin

wheels at any point where a particularly difficult problem

presents itself. Instead, continue on through until more clar-

ification is gained and then return to the difficult problem

when a more comfortable solution is available.

1. Read the entire study through rather casually to gain a

general overview.

2. Ascertain the central theme of the study, the basic ratio-

nale for the research, and the relationship of the study to

other research.

3. Determine the existing theory, if any, to which the research

is addressed, or speculate as to the basic theoretical

framework.

4. Identify the subject(s) of the study and the research setting

or environment if it is localized.

5. Determine the basic nature of the research (e.g., historical,

descriptive, or experimental). Studies of an inferential

nature can usually be detected at this point.
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II. The Research Question(s)

Every research study should have a question or questions

formulated prior to its initiation. It is the nature of the question

or questions and the approach toward resolution that distin-

guish one form of research from another. Quite often a primary

questionwill be subdivided into subquestions. This is amatterof

style and can be helpful for both the researcher and the con-

sumer. All too often, however, the research questions (RQs)

either are not stated or are stated poorly. In the event that the

research questions are not stated, it is necessary for the con-

sumer to speculate by formulating a tentative guess. One may

then return later and revise the question as more information

is gained.

� Ascertain the question(s) asked.

� Determine whether the criteria for good research questions

are met, and if not, restate the RQs as you believe the

researcher intended them to be stated, applying the criteria.

This is an important step toward a clearer interpretation of

the remainder of the study. A good research question must

be clear, unambiguous, and in question form. It must ask

about the relationship between two or more variables and

must imply the possibility of empirical testing.

III. Follow a Single Question All the Way Through

The research question is the primary reference point for inter-

pretation and evaluation of any research study. It is for this

reason that all of the guidelines that are presented here

should be applied to each research question individually and

completely, oneRQat a time. It is quite easy for the consumer of

research to become lost in the middle of the study among all
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the jargon, charts, and statistics. When this happens, simply

return to the specific research question and start over.

IV. The Hypotheses

Just as every research study should have at least one question,

it should also have some systematic means of answering the

question. This is usually, though not always, accomplished

through the use of hypotheses. In that it is conceivable that

more than one hypothesis is required to help answer a single

research question, depending on the style of the author and

howbroadly thequestion is formulated, eachhypothesis should

be followed through individually and completely. All four of

these guidelines should be followed by the consumer before

starting on a second hypothesis.

1. For each research question identified in the study, ascertain

the hypothesis (or hypotheses) intended by the researcher

to help answer that research question. Formal hypotheses

should be stated in two forms: the research or alternative

hypothesis (Ha), which is what the researcher is actually

guessing the true situation to be, and the null hypothesis

(H0), which provides a mathematical zero reference point

for a formal statistical test.

2. For each research hypothesis (Ha), determine the corre-

sponding null hypothesis (H0) that is actually tested.

3. Determine whether the stated alternative and null hypoth-

eses meet the criteria for good hypotheses, and if not, state

or restate them applying the criteria. They should be stated

as you feel the researcher meant to state them.

4. If only the null hypothesis is stated, which is unfortuna-

tely too often the case, speculate and state the research
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hypothesis (Ha) in an acceptable manner. Usually when

only the null hypothesis (H0) is presented it is safe to

assume that the alternative hypothesis (Ha) is a nondirec-

tional hypothesis. This means that the researcher is not

predicting a greater-than or less-than relationship, but

instead is simply waiting to see what will happen. In this

case a two-tailed test of statistical significance will be used

in hypothesis testing.

V. The Variables

Because the very essence of research is centered on the relations

betweenandamongvariables,athoroughknowledgeofvariables

and their classifications is imperative for research interpretation.

Very generally, variables are classified into three categories

according to their relative purpose or existence in a study: inde-

pendent variable (IV), dependent variable (DV), and extraneous

variable (EV). Extraneous variables are contaminating, are

unwanted, and need to be controlled in someway.

� Identify each variable important to the hypothesis and

research question, and classify it as independent or

dependent if appropriate within the context of the study.

Some studies are more concerned with simply the associ-

ation of a large number of variables, in which case this may

not be appropriate. If independent, classify as either active

or attribute.

� Identify all extraneousvariablesmentionedby the researcher

for each hypothesis. These are variables that behave like

independent variables and confound or contaminate the

study.Determineany steps takenby the researcher tocontrol

for those extraneous variables mentioned.
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VI. The Operational Definition (OD)

Every variable in a study must have an operational definition

(OD). The OD is specific (though not necessarily unique) to

the study. It is the precise way the variable is measured in the

study, and its nature is the prerogative of the researcher.

� Identify the operational definition of each variable.

� The consumer should take time to learn about any opera-

tional definitions with which he or she is unfamiliar at this

point (e.g., Q-sort technique, semantic differential, various

published psychological instruments, etc.).

� Keep notes for later use.

� Determine the level of measurement (scaling) of each vari-

able’s operational definition, and distinguish between those

considered continuous and those considered discrete.

VII. The Population under Study

At this point the consumer should take a closer look at exactly

whom the study is concerned with.

� Determine the precise population under study. Quite often

the researcher does not define the population clearly. If this

is the case, one must speculate the best one can.

� Determine the actual subjects comprising the sample in the

study, the number acquired, and the method of acquiring

the subjects (sampling).

VIII. The Basic Research Design

The nature of the design of the research is dependent upon

the research questions asked and the researcher’s approach
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toward answering those questions. Because of the large

number of possible designs, the consumer should have some

background knowledge of general research designs to assist

him or her in identification. The simpler experimental or quasi-

experimental attempts are usually the easiest to detect

because of their emphasis on matched or random assignment

and control or comparison groups. Other designs may bemore

difficult for the consumer to discern. At any rate, the consumer

should glean what information is possible regarding the basic

design from the context of the study. It may also prove helpful

to diagram the design if possible.

IX. The Collection of the Data

� Determine precisely how the data were collected for each

variable.

� Familiarize yourself with any procedures mentioned that

are unknown to you at this point (e.g., survey techniques,

mechanical devices, psychometric instruments, etc.). This is

obviously relatedtooperationaldefinitions inmany instances.

� Keep notes on new information for later use.

X. The Analysis of the Data

Most research studies are fairly clear as to how the data were

analyzed. However, adequate interpretation requires some

knowledge of basic statistics and the common symbols

encountered. In addition, one should be familiar with the basic

hypothesis-testing process. The serious consumer of published

researchwill keep a notebook handy with acquired information

that can be added to and drawn from continuously. The con-

sumermust eventually acquire an interpretive knowledgeof the
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most commonly seen statistics (e.g.,Z, t,F (the simplermodels),

chi-square, and r). These statistics, along with their use and the

information they yield, may be found in any elementary statis-

tics text.Whenmore sophisticated techniques are encountered

(e.g., multiple regression, factor analysis, discriminate analysis,

or canonical correlation), use information resources related to

multivariate statistics.

� Identify and define each statistical procedure employed

and note the specific variables involved.

� Identify and define each symbolic expression encountered

and determine the precise meaning with respect to the

analysis presented.

� Take notes on information gained for future use.

XI. The Presentation of the Results

The presentation of the results is necessarily related to the

analysis of the data and will usually be a combination of narra-

tive and tables or graphs. It is important for the consumer topay

careful attention to exactly what the researcher has presented.

� Identify and define all terms and symbols presented in the

results.

� Determine which null hypotheses, if any, were rejected and

the level of significance for rejection.

� Stay with a table or graph until you know you understand

what is presented.

XII. The Conclusions and Interpretations

The conclusions of the study should be based on the analysis

of the hypotheses, if hypotheses were tested, and should be
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The researchers of this study used the Rauscher et al. recommendations to
plan a replication study to “be a faithful replication of the central conditions of
the Rauscher et al. experiment.” However, there were differences in this repli-
cation study that included: (1) only one posttreatment assessment was used, (2)
random assignment to condition group was used to create equivalent groups,
(3) the time interval was lengthened by 24 hours to 48 hours between pretest and
treatment condition.

4. What conceptual, methodological, and measurement theories undergird
this study? This information can be found in the introduction but also
throughout the article.

� The overarching theory relates to cognitive learning theory.

� The more immediate theories are:
� Musical (complexly structured) experience of short duration (long

duration) improves spatial abilities.

� Music as a mood-induction technique affects performance on cognitive
tasks.

5. Who are the participants and what is the research setting?

Describe the characteristics of the sample participants.

clearly related to the original research question(s). The con-

sumer’s focus of attention should be on whether the research

questions were answered, and on the final conclusions of the

study regarding the questions.

� Ascertain the specific conclusion for each finding presented.

� Determine the researcher’s interpretation with respect to

each conclusion individually and in concert with respect

to the research question(s).

Source: From Dennis A. Gay, PhD, University of Northern Colorado. By per-

mission of Professor Gay.
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� There were 125 introductory psychology students who comprised the
study sample. There were 42 males and 83 females. The students received
credit for participation.

Describe the research setting.

� The students participated in the study in a university psychology building
in the early evening when the building was quiet. There were 15 persons in
each session with a projector in the room.

6. What research method(s) are used in this study? Different general
categories of research methods include survey, descriptive, causal-comparative,
correlation, multivariate correlation, experimental, quasi-experimental, case
study, single-case designs, qualitative, historical, evaluation, and action research.

The general method of research used in the study was experimental. The
experimental design used a manipulated independent variable, random assign-
ment to condition, and a control group.

7. Diagram the overall research design used in the study. There is an
overall experimental design used in the study. However, it is modified for dif-
ferent questions. For example, there is no pretest on Profile of Mood States
(POMS) scores.

The design is a randomized pretest-posttest multiple treatments control
group design.

R O XMozart O
R O Csilence O
R O XGlass O

8. Identify the steps used to collect data for this study. Brief summaries of
the 14 steps are presented next.

1. The researchers in this study used one posttest assessment, unlike the
Rauscher study.

2. They used random assignment, not assignment by PF&C scores, to
improve the design and to create equivalent groups.

3. They allowed 48 hours to elapse between sessions.
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4. The study was conducted in the early evenings in a university psychology
building where it was quiet.

5. The researchers used 15 students per group session to assure visibility of
the projected PF&C items.

6. Acceptable deceit was used by telling participants during the first session
that they were participating in a puzzle experiment.

7. The researchers used sample PF&C items to explain the task.

8. They answered student questions.

9. The 16 PF&C items were projected for 1 minute each.

10. The second session was 48 hours later, and the students were reminded
of the task.

11. The participants were exposed to the stimulus condition and immedi-
ately tested on a new set of 16 PF&C items.

12. The PF&C items were counterbalanced to avoid an order effect or dif-
ficulty issues (systematic bias).

13. Exposure to music is an established mood-induction technique, so it was
incorporated into the study. After the PF&C task, the participants were
given a mood assessment instrument and were asked to identify their
mood when the PF&C task began.

14. Performance on the PF&C task and mood were analyzed at a later time.

Identify the Research Questions in the Study

The research questions stated next were not stated in the article. They were
created by reviewing the analyses and results reported. Two research questions
were written to reflect the analyses and results of the study. The first research
question has subquestions A, B, and C and focuses on several analyses that relate
to spatial reasoning. The second question is stated with one subquestion (A).

Research Question for RQ1

RQ1: Will participants who receive the Mozart listening condition
produce greater spatial reasoning performance (mean number of paper
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folding and cutting items answered correctly) when compared to parti-
cipants who receive the listening conditions of silence or Glass?

Research Question for RQ1 Subquestion A

RQ1 subquestion A: Will there be differences in pretest spatial reasoning
performance (mean number of paper folding and cutting items answered
correctly) across the three listening conditions (Mozart, silence, andGlass)?

What Are the Hypotheses for RQ1 Subquestion A?

HaS-QA: There will there be differences in pretest spatial reasoning per-
formance (mean number of paper folding and cutting items answered
correctly) across the three listening conditions (Mozart, silence, and Glass).

Symbolic HaS�QA : µMozart 6¼ µsilence 6¼ µGlass

H0S-QA: There will there be no differences in pretest spatial reasoning
performance (mean number of paper folding and cutting items answered
correctly) across the three listening conditions (Mozart, silence, and Glass).

Symbolic H0: µMozart ¼ µsilence ¼ µGlass

Variables and Operational Definitions for RQ1 Subquestion A

Independent variable (IV): Listening condition.

Condition 1 (or OD1): Mozart

Condition 2 (or OD2): silence

Condition 3 (or OD3): Glass

Active IV? Yes. Attribute IV? No. Fixed IV? Yes. Random IV? No.
Scale of measurement? Discrete-nominal.
Dependent variable (DV): Pretest spatial reasoning performance.
Operational definition (OD): Mean number of paper folding and cutting

items answered correctly.
Scale of measurement? Continuous-ratio.
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What Was the Analysis of the Data and Presentation of the Results

for RQ1 Subquestion A?

1. Identify statistical procedure employed: One-way analysis of variance.

2. Findings and values for testing the H0(s): The following finding is reported in
the left column at the top of page 368 of the article, F(2, 122)¼ .05, p¼ .95.
This finding assesses the pretest means for significant differences. The pretest
means are listed in Table 1 of the article.

Conclusion and the Interpretation for RQ1 Subquestion A There are no
significant differences in pretest spatial reasoning across the listening condition
groups of participants. The groups were equivalent at the beginning of the study on
spatial reasoning, confirming that the random assignment to condition worked.

What Is the Research Question for RQ1 Subquestion B? This question
reflects a factorial ANOVA statistical design, more specifically a 23 3 ANOVA.
There are three analyses embedded within it. First, the differences between all
groups’ scores from pretest to posttest are assessed, which is also referred to as the
main effect of session (pretest-posttest). Second, the differences on spatial rea-
soning among the three conditions groups at the posttest on spatial reasoning are
assessed, called the main effect of listening condition. Third, the interaction effect
between session (pretest-posttest) and listening condition (Mozart, silence, Glass)
on spatial reasoning is assessed.

RQ1 subquestion B(1): Will there be session (pretest-posttest) main effect
differences, treatment (listening condition) main effect differences, and an interac-
tion effect difference (session3 treatment) on the spatial reasoning performance of
participants?

What are the hypotheses for RQ1 subquestion B(1)?

HaB(1): There will be main effect differences on the spatial reasoning
performance of participants across the sessions (pretest-posttest).

Symbolic HaBð1Þ: µpretest 6¼ µposttest

H0B(1): There will be no main effect differences on the spatial reasoning
performance of participants across the sessions (pretest-posttest).

Symbolic H0Bð1Þ: µpretest ¼ µposttest
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IVB(1): Session.

Condition 1 (or OD1): Pretest

Condition 2 (or OD2): Posttest

DVB(1): Pretest spatial reasoning performance.
OD: Mean number of paper folding and cutting items answered correctly.

HaB(2): There will be main effect differences on post spatial reasoning per-
formance of participants across the treatment listening conditions (Mozart,
silence, Glass).

Symbolic HaBð2Þ: µMozart 6¼ µsilence 6¼ µGlass

H0B(2): There will be no main effect differences on the post spatial reasoning
performance of participants across the treatment (listening conditions).

Symbolic H0Bð2Þ: µMozart ¼ µsilence ¼ µGlass

IVB(2): Listening condition.

Condition 1 (or OD1): Mozart

Condition 2 (or OD2): silence

Condition 3 (or OD3): Glass

DVB(2): Posttest spatial reasoning performance.
OD: Mean number of paper folding and cutting items answered correctly.

HaB(3): There will be an interaction effect (session3 treatment) difference
on the post spatial reasoning performance of participants.

Symbolic HaBð3Þ: µsession3 µListeningCondition 6¼ 0

H0B(3): There will be no interaction effect (session3 treatment) differ-
ence on the spatial reasoning performance of participants.

Symbolic H0Bð3Þ: µsession3 µListeningCondition ¼ 0
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IV1B(3): Session.

Condition 1 (or OD1): Pretest

Condition 2 (or OD2): Posttest

IV2B(3): Listening condition.

Condition 1 (or OD1): Mozart

Condition 2 (or OD2): silence

Condition 3 (or OD3): Glass

DVB(3): Posttest spatial reasoning performance.
OD: Mean number of paper folding and cutting items answered correctly.

Analysis of the Data and Presentation of the Results for RQ1

Subquestion B Identify statistical procedure employed: 23 3 ANOVA.
Identify the findings and values for testing the H0(s):

Main effect of session: F(1, 122)¼ 76.1, p, .001.

Main effect of listening condition: F(2, 122)¼ 0.11, p¼ .89.

Interaction effects of session and listening conditions:F(2, 122)¼ 0.48, p¼ .62

Conclusions and Interpretations for RQ1 Subquestion B Themain effect of
the session (pretest-postest) was a significant indication that overall the participants
in the three groups showed a gain in spatial reasoning from the pretest to the
posttest. The main effect of the listening condition was not significant, reflecting
that the spatial reasoning means were not significantly different across the three
listening condition groups at the end of the study. This is the finding that is the
most important as to whether there was a Mozart effect in this study, and there
was not. The interaction effect of the session and listening condition was not
significant, indicating that there was no differential effect at different levels of
the independent variables.

What Is the Research Question for RQ1 Subquestion C? RQ1 subquestion
C: Will participants who receive the Mozart listening condition produce greater
spatial reasoning performance (mean number of paper folding and cutting items
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answered correctly) when compared to participants who receive the listening
conditions of silence or Glass when adjusted for an individual’s initial perfor-
mance on the PF&C task (pretest)?

What Are the Hypotheses for RQ1 Subquestion C?

HaSQ-C: Participants who receive the Mozart listening condition will
produce greater spatial reasoning performance (mean number of paper
folding and cutting items answered correctly) when compared to partici-
pants who receive the listening conditions of silence or Glass when adjusted
for an individual’s initial performance on the PF&C task (pretest).

Symbolic HaSQ�C: µadj:Mozart. µadj:silence. µadj:Glass

H0SQ-C: There will there be no differences in spatial reasoning performance
(mean number of paper folding and cutting items answered correctly) across
the three listening conditions (Mozart, silence, andGlass) when adjusted for
an individual’s initial performance on the PF&C task (pretest).

Symbolic H0SQ�C: µadj:Mozart ¼ µadj:silence ¼ µadj:Glass

Variables and Operational Definitions for RQ1 Subquestion C

IVSQ-C: Listening condition.

Condition 1 (or OD1): Mozart

Condition 2 (or OD2): silence

Condition 3 (or OD3): Glass

DVSQ-C: Posttest spatial reasoning performance when adjusted for an indi-
vidual’s initial performance on the PF&C task (pretest).

OD: Mean number of paper folding and cutting items answered correctly.
Identify the analysis of the data and presentation of the results for RQ1

subquestion C.
Identify statistical procedure employed: One-way analysis of covariance where

the pretest scores on spatial reasoning were used as the covariate.
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What are the findings and values for testing theH0(s)?F(2, 121)¼ 0.61, p¼ .55.

Conclusion and Interpretation for RQ1 Subquestion C Again, there was no
significant difference in spatial reasoning ability across the three listening con-
ditions (Mozart, silence, Glass) when the pretest scores on spatial reasoning were
used as the covariate. This outcome is another confirmation that there was no
Mozart effect in this study.

Research Question for RQ2

RQ2:Will participants who receive theMozart listening condition produce different
mood factor scores (depression, tension, anger, vigor, fatigue, and confusion) when
compared to participants who receive the listening conditions of silence or Glass?

Hypotheses for RQ2

Ha1�6: There will there be differences in mood factor scores (depression,
tension, anger, vigor, fatigue, and confusion) across the three listening
conditions (Mozart, silence, and Glass).

(There were actually six hypotheses analyzed reflecting the comparisons for
differences across the listening conditions on each of the six mood factor scores.
For the sake of brevity, we will write only one hypothesis, knowing, though, that
six were tested.)

Symbolic Ha1-6: µ1ðMozÞ 6¼ µ2ðsilenceÞ 6¼ µ3ðGlassÞ

(This alternative hypothesis is used for each of the six mood factor scores that are
each a different dependent variable.)

H01�6: There will be no differences in mood factor scores (depression,
tension, anger, vigor, fatigue, and confusion) across the three listening
conditions (Mozart, silence, and Glass).

Symbolic H01-6: µ1ðMozÞ ¼ µ2ðsilenceÞ ¼ µ3ðGlassÞ

(This null is used for each of the six mood factors.)
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Variables and Operational Definitions for RQ2

IV: Listening condition.

Condition 1 (or OD1): Mozart

Condition 2 (or OD2): silence

Condition 3 (or OD3): Glass

Active IV? Yes. Attribute IV? No. Fixed IV? Yes. Random IV? No.
Scale of measurement: Discrete-nominal.
DVs: The six mood factors (depression, tension, anger, vigor, fatigue, and

confusion). Each mood factor is analyzed as a separate dependent variable.
OD: There were three questions drawn from each of the six mood factors of the

65 questions of the Profile of Mood States (POMS), which is a psychometric test.
Scale of measurement of the DV: Continuous-interval.

Analysis of Data and Presentation of the Results for RQ2 Identify sta-
tistical procedure employed: The researchers most likely used a series of six one-
way ANOVAs.

Findings and values for testing the H0(s): Only two of the six mood factors
were significantly different across the three conditions; they were:

1. Tension F(2, 122)¼ 6.32, p¼ .002

2. Anger F(2, 122)¼ 7.21, p¼ .001

Conclusions and Interpretations for RQ2 There were significant differences
in the mood factors of tension and anger across the listening conditions. A post
hoc Tukey HSD was conducted to determine which paired means were different
from each other. The researchers found that the Mozart condition produced the
lowest tension and anger scores compared to the silence and Glass conditions.
The Mozart condition produced significantly lower tension (p¼ .001) and lower
anger (p¼ .001) when compared to the Glass condition.

Conclusions and Interpretations for RQ 2 Subquestion A Unlike the
spatial reason findings, there was a Mozart effect on the moods of tension and
anger. Mozart produced significantly lower tension and anger mood scores when
compared to music by Glass.
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Discuss the comparisons of effect sizes of previous studies and this study
relative to the Mozart effect. In the discussion section of the article, the authors
present and discuss the effect sizes from the original study by Rauscher et al.
(1995), this study, and 15 other Mozart-versus-silence studies (see Table 13.1).
Cohen’s effect size convention for d is small (.20), medium (.50), and large (.80).

Identify the major conclusions from the study.

� No significant Mozart effect on spatial reasoning ability was found using
replication procedures recommended by Rauscher. The procedures were not
exactly like the ones that Rauscher et al. (1995) used. Essential experimental
procedures were added by the researchers, including random assignment of
participants to condition, and the PF&C items were used in a counter-
balanced order across sessions and groups.

Steele, Bass, and Crook (1999) stated, “We conclude that there is little
evidence to support basing intellectual enhancement programs on the existence
of the causal relationship termed the Mozart effect” (p. 368).

� There was an effect on mood (tension and anger). Tension and anger scores
were significantly lower for the participants receiving the Mozart condition
compared to the Glass condition. The participants were less happy listening to
the Glass selection reflecting amelodic and repetitive music compared to the
Mozart selection. Other studies have found that mood can affect performance
in other cognitive tasks indirectly through differences in mood.

Identify recommendations for future studies.

� There need to be improved specifications of the class ofmusic selections that are
likely to produce effects. Rauscher et al. used the term “complexly structured
music” to depict Mozart music. It would be valuable to conduct additional

TABLE 13.1 Comparisons of Effect Sizes of the Mozart Effect

Study Effect Size d Size of Effect

Rauscher et al. (1995) d¼ .72 High medium

This study d¼ .06 Very small

Average of 15 other studies d ¼ :16 Small
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studies focusing on other stimulus variables to see if they have an effect on
spatial reasoning.

� Another issue relates to the dependent variable of spatial reasoning as
measured by the PF&C items. The early research by Rauscher reported that
some studies did not find a Mozart effect because they used spatial pattern-
recognition tasks (Raven Progressive Matrices) rather than spatial-temporal
tasks (PF&C). However, two studies used both types of tasks and found no
difference. So, more research is needed using and comparing different cog-
nitive ability tasks.

SUMMARY

The information learned in previous chapters has been applied to the analysis of a
published quantitative research article. A structured format using the Research
Interpretation for Consumers (Gay, 1976) was used to interpret the article.

PROBLEM ASSIGNMENT

The process of analyzing a quantitative research article was presented in this
chapter. Now it is your turn to independently analyze a quantitative article.
Retrieve the following article for review, study, and analysis.

Pace, T. M., & Dixon, D. N. (1993). Changes in depressive self-schemata
and depressive symptoms following cognitive therapy. Journal of Counseling
Psychology, 40, 288�294.

Go to the companion website and you will find an Article Analysis Worksheet
to use for analyzing this new article. Use the information in this chapter to guide
you as you complete the assignment. Your instructor will evaluate your completed
worksheet when it is finished.
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INDEX

A
A priori effect size, 44
A priori power, defined, 44
A priori power analysis, 33�34, 44�52, 130;

adolescent depression treatment program
study, 139�142; of ANOVA problem, 141;
conversion to Cohen’s effect size, 140�141;
doctoral student dissertation study, 406�407;
effect size (ES) used in, 47�48; multiple
sclerosis (MS) study, 351�354; using
G*Power 3.1.2, 141; weight loss treatment
with support partners study, 192�193;
weighted by sample size average η2, 140

Abscissa, 10, 17, 20
Active independent variable, 4
Adjusted R2 value, 418
Adolescent depression treatment program study,

131, 133�135; alpha criterion (α), 138�139;
alternative hypothesis (Ha), 136�137;
ANOVA formulas, 167; ANOVA study
results, 175�177; ANOVA summary table,
166�167, 169; cognitive-behavioral therapy
(CBT), 131�132; confidence intervals for
mean differences of significant pairs,
174�177; confidence intervals of mean
differences, 165; data diagnostics, studying,
145�148; dependent variable (DV), 131,
132�133; eta-squared, 172�173; formula
calculations, 166�177; grand mean,
167�168; graphical representation of findings,
169�170; homogeneity of variance,
154�156; independence, 156�158;

independent variable (IV), 131; interpersonal
therapy (IPT), 132; kurtosis z-scores by
condition group, 151; magnitude of treatment
effect—post hoc effect size, 162�163; mean
square error, 168�169;mean square treatment,
168; negatively skewed (left-skewed) curve,
149; no-treatment control condition, 133;
no-treatment waiting-list control, 132; null
hypothesis, establishing (H0), 137; omega-
squared, 173�174; omnibus (comprehensive)
research question, stating, 135�136; one-way
analysis of variance (ANOVA), 133�135;
one-way analysis of variance (ANOVA) data,
178�181; one-way ANOVA formula
calculations, 166�172; one-way ANOVA
IBM SPSS commands, 159�160;
operationally defined (OD), 131�132;
positively skewed (right-skewed) curve, 149;
post hoc effect sizes, 172�174; post hoc
multiple comparisons of means, 163�165;
post-hoc power, 163; a priori power analysis,
139�142; randomized posttest-only control
group design, 133; reducing symptoms,
130�131; research design, 133�135; sample
selection and assignment, 144�145; skewness/
kurtosis/standard error values by group, 150;
skewness z-scores by condition group, 151;
statistical analysis, 133�135; study variables,
131�133; treatment conditions, 130; Tukey
HSD test for multiple comparisons, 170�172;
underlying assumptions, assessing for,
148�153
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age variable, 84
Alpha correction, 371
Alpha criterion (α), 138�139, 156, 162,

164, 176
Alpha level, 20, 33, 44
Alternative hypothesis (Ha), 19, 30�31,

136�137; adolescent depression treatment
program study, 136�137; cocaine abusers in
treatment study, 238�240; directional,
31�32; doctoral student dissertation study,
405; inferential statistical application so, 19;
multiple sclerosis (MS) study, 349�350;
nondirectional, 19, 22; weight loss treatment
with support partners study, 190�191

Ambiguous temporal precedence, 59
Analysis of covariance (ANCOVA), 134,

298�300, 320�321; covariates, 298; defined,
298; extraneous variables (EVs), 298; one-way,
70; regression analysis, 298

Analysis of variance (ANOVA), 62�63, 65;
ANOVA summary table specifications, 167;
Friedman repeated measures, 71; multifactor,
69�70; one-way, 67�69, 130; repeated
measures, 69

ANCOVA, See Analysis of covariance
(ANCOVA)

ANOVA, See Analysis of variance (ANOVA)
Ascending, 97
Asymmetrical, 109
Attribute independent variable, 4
Average correlation, 194, 195, 227

B
Bar chart, 10
Beck Depression Inventory (BDI), 5
Behavioral weight control treatment (BWCT),

See Weight loss treatment with support
partners study

Beta error (Type II error), 33
Between-subjects ANOVA design, cocaine

abusers in treatment study, 235
Bimodal, 7
Bivariate correlation (r), 412
Bivariate correlation methods, using multiple

regression analysis, 401�438
Bivariate correlational matrix, 91

Bivariate relationships, 66, 403
Blinded procedures, 58�59
Bonferroni adjusted alpha, 371, 399
Bonferroni alpha correction, 386

C
Categorical variable, 5
Center for Epidemiological Studies Depression

Scale (CES-D), 62�63, 131�132, 135, 164
Central limit theorem, 19
Charts, 88�89
Classification variable, 5
Cocaine abusers treatment study: alternative

hypothesis (Ha), 238�240; appropriate
statistic/sampling distribution, choosing, 247;
between-subjects ANOVA design, 235;
confidence intervals of mean differences,
273�278; data entry, accuracy of, 249;
dependent variable (DV), 233; factorial
ANOVA, 231�295; homogeneity of variance,
260; homogeneity of variance evidence,
summary of, 260�261; independence,
261�263; independent variables, 232�233;
Levene’s test, 261; matrix scatter plot, 263;
matrix scatter plot SPSS commands,
262�263; means, 249�250; missing data
analysis, 249�250; mixed-subjects ANOVA
design, 235; normal Q-Q plots, 256,
258�259; normality evidence, summary of,
256�258; null hypothesis (H0), establishing,
240�241; omega-squared (ω2), 285�287;
omnibus research questions (RQs), 237�238;
partial eta-squared (η2), 284�285;
participants’ abstinence from cocaine during
treatment, 233; post hoc effect sizes,
284�287; post hoc power, 273; purpose of
study, 289�290; research design, 233�237;
research problem, 231; risk level of rejecting
the true (H0), 241�247; sample selection/
assignment, 248�249; Shapiro-Wilk (S-W)
statistics, 255, 257; simple effects analysis,
268�271; skewness, 255; standard deviations,
249�250; study data diagnostics, 249; study
results, formula calculations of, 278�290;
study sample, 289; study variables, 231�232;
treatment condition, 233; treatment retention,
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233; treatment status, 233; 2 3 2 factorial
design, 234, 237; two-way analysis of variance
data, 291�294; two-way ANOVA computer
analysis results, 265�271; two-way ANOVA
formula calculations, 278�284; two-way
ANOVA SPSS commands, 264�265;
underlying assumptions, assessing for,
250�255; underlying assumptions findings,
summary of, 263�264; univariate outliers
IBM SPSS commands, assessing for,
249�250; variances, 249�250; within-
subjects ANOVA design, 235

Coefficient of determination, 412
Coefficient of variation (C ), 10
Cognitive-behavioral therapy (CBT), 131�132
Cohen’s d statistic, 45
Cohen’s strength: of η2 effect sizes, 46; of r

effect sizes, 47
Composite mean variable of two variables,

creating, 95�96
Composite summed variable of two variables,

creating, 93�94
Compound symmetry, 196
Confidence intervals, 37
Confidence intervals of mean differences, 160,

165�166; cocaine abusers in treatment study,
273�278

Constant, 421
Continuous-interval scale, 5
Continuous-ratio scale, 5
Continuous scale, 299
Controlling extraneous variance

(MaxMinCon), 54
Corrected effect sizes, 45, 47
Correction: alpha, 371; Bonferroni alpha, 386;

Lilliefors, Kolmogorov-Smirnov test with,
114�115

Correlation coefficient, defined, 412
Correlation designs, 61
Correlational research methods, 66
Correlational research models, 54
counconfid variable, 85, 97
Covariances, 196, 208�209
Covariates, 298, 299, 343
Criterion variable (CV), 5, 31, 66
Critical value, 20

Cubic trend, 214
Cumulative probability of residuals, 415

D
Data analysis commands, 78
Data diagnostics, 100, 177; adolescent depression

treatment program study, 145�148; doctoral
student dissertation study, 409; erroneous data
entries, detecting, 100�103; histograms, 110;
kurtosis, 109�110; missing data, identifying/
dealing with, 103�106; multiple sclerosis
(MS) study, 355�368; multivariate outliers,
107�108; procedures, 35; purposes of, 145;
research example, 100�127; skewness,
109�110; univariate assumptions, screening
and making decisions about, 108�109;
univariate outliers, 106; weight gain among
women with bulimia study, 35; weight loss
treatment with support partners study,
196�205

Data preparation, 100, See Data diagnostics
Data screening, 34�35, 37, 100, See Data

diagnostics
Data transformation, 108, 120, 122, 125
Data View screen, IBM SPSS 20 program,

79�80, 86�87
Data View tab, IBM SPSS 20 program, 86
dealdiff variable, 85, 89
Deception, 59
Degrees of freedom (df), 9, 162, 169
Dependent (outcome) variables, 54
Dependent t-test, 23
Dependent variables (DVs), 4, 30�31, 445;

adolescent depression treatment program
study, 131; cocaine abusers in treatment study,
233; drug treatment program study, 299;
weight loss treatment with support partners
study, 186

Depression treatment program study,
See Adolescent depression treatment
program study

Descending, 97
Descriptive statistical applications of normal

distribution, 17�18
Descriptive statistics, 89�90
Directional alternative hypothesis, 31�32

bindex 18 June 2012; 21:9:25

INDEX � 467



Discrete-nominal scale, 5, 299
Discrete-ordinal scale, 5
Discrete scale, 5
Dissertation Stress Inventory (DSI),

402, 433
Doctoral student dissertation study, 401�438;

alternative hypothesis (Ha), 405; appropriate
statistic/sampling distribution, choosing, 407;
correlation coefficients, general screening of,
412�413; data diagnostics, studying, 409;
dissertation completion, 402; Dissertation
Stress Inventory (DSI), 402�403, 433; F-test
of change in R2, 432�433; multicollinearity
and singularity, assessment of, 414�415;
multivariate outlier analysis, 410�412;
normality/linearity/homoscedasticity of
residuals, assessment of, 415�417; null
hypothesis (H0), establishing, 406; omnibus
research question (RQ), 405; partial regression
coefficients, 431; Pearson product-moment
correlation coefficient, 423; predictor variables
(PVs), 403; a priori power analysis using
G*Power 3.1.2, 406�407; problem
assignment, 434�435; research method,
403�404; research model, 403�404; research
problem, 402; risk level of rejecting the true
(H0), 406; sample selection/assignment,
408�409; Scientist Practitioner Inventory
(SPI), 402�403, 433; sequential MRA data,
435�437; sequential MRA (hierarchical
MRA), 404; sequential multiple linear
regression, 403; sequential multiple regression
analysis, 417�423, 433�434; significance of
R2 using analysis of variance for model 2, 432;
SPIPract and DSI Pearson product-moment
correlation, 427�430; SPIScient and DSI
Pearson product-moment correlation,
423�427; squared multiple correlation for
model 2, 432; standard MRA (simultaneous
MRA), 404; statistical analysis, 404; statistical
MRA (stepwise MRA), 404; study results,
formula calculations of, 433�434; study
variables, 402�403; univariate outlier analysis,
409�410

Double-blind procedure, 58�59
DREAD, 61, 64; defined, 59�60

Drug treatment program study: adjusted means,
calculation of, 337�338; alternative
hypothesis (Ha), establishing, 301�302;
analysis of covariance (ANCOVA), 300,
320�321; ANCOVA results, 321�323, 339;
appropriate statistic/sampling distribution,
choosing, 306; confidence intervals of mean
differences, 325; continuous scale, 299;
covariance of age 3 LDA, calculations of,
332�335; covariate age, calculations for,
330�332; covariates, 298, 299; dependent
variable, 299; dependent variable LDA,
calculations for, 327�330; error term, 306;
exploratory data analysis, 306, 307�327;
homogeneity of regression (slope) assumption,
317�318; homogeneity of variance,
312�316; independence, 316�317;
independent variable, 299; LDA, adjustment
of, based on the covariate of age, 335�337;
magnitude of treatment effect—post hoc effect
size, 324�325; marginal means, estimated,
323�324; null hypothesis (H0), establishing,
302; omnibus research question (RQ), 301;
population mean, 301�302; post hoc power,
325; power analysis using G*Power 3.1,
303�305; a priori power analysis, 303;
research design, 300; research problem,
298�299; risk level of rejecting the true (H0),
302�306; sample mean, 302; sample
selection/assignment, 307; standard care plus
contingency management condition, 302;
study results, formula calculations of,
327�338; study variables, 299; two-group
posttest-only randomized experimental design
with covariate, 301; underlying assumptions
findings, summary of, 318�319

Dummy variable, 103

E
Effect size (ES), 37, 45; used in a priori power

analysis, 47�48
Error term, 306
Estimated (a priori) effect size, 139, 163
Eta-squared (η2), 46, 162, 172�173
ethn variable, 84
ethnicother variable, 84�85
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Evidence-based practice in psychology (EBPP), 3
Exact significance, 372
Exclusion criteria, 17�18, 144
Expectation maximization (EM), 105
Experimental conditions, formulating, 54�55
Experimental designs, 56; experimental research

procedures, 64; internal validity, 59�61;
randomized multiple treatments and control
with posttest-only design, 62; randomized
multiple treatments and control with pretest
and posttest design, 63; rules/symbols used to
describe, 61

Experimental research: procedures, 64;
purpose of, 54

Exploratory data analysis (EDA), 37, 100, 306,
307�327, See also Data diagnostics; drug
treatment program study, 306, 307�327

Explore Analysis, 88
Extraneous experimental influences, controlling,

57�59
Extraneous variables (EVs), 4, 298, 445; blinded

procedures, 58�59; building into the design,
58�59; matching participants, 58

Extraneous variance, controlling, 54

F
F change value, 420
Factor: defined, 69; use of term, 235
Factorial ANOVA, 231�295
Factorial design, 233
Factors, See Independent variable (IV)
Family of conclusions, 371
Fisher, R., 134
Fisher’s protected least significant differences

(PLSD), 222�226
Foundational research concepts: active

independent variable, 4; attribute independent
variable, 4; categorical variable, 5; classification
variable, 5; dependent variable (DV), 4;
extraneous variable (EV), 4; independent
variable (IV), 4

Foundational statistical information, 6�14;
coefficient of variation (C), 10; measures of
central tendency, 6�8; measures of variability
(dispersion) of scores, 8; standard deviation of
the sample (s), 9; variance of the sample (s2),

8�9; visual representations of a dataset,
10�14

Free statistics calculators, 18
Frequency analysis, 87�88
Frequency distribution, 10
Frequency table, 88
Friedman repeated measures analysis of

variance, 71
Friedman RM-ANOVA, 72
Friedman’s rank test, 382�387; formula

calculations, 395�396

G
gender variable, 84
Glass’s Δ (delta) statistic, 46
G*Power, 47�48, 50
G*Power 3.1, 48, 303
Grand mean (MTOT), 167�168
Greenhouse-Geisser, 209, 211

H
Histograms, 12�13, 110�112, 121
Homogeneity of regression (slope) assumption,

317�318
Homogeneity of variance, 134, 154�156;

adolescent depression treatment program study,
154�156; cocaine abusers in treatment study,
260; drug treatment program study, 312�316;
evidence, 156; multiple sclerosis (MS) study,
367�368; screening for, 115�116

Homogeneous sampling, 408
Homoscedasticity, of residuals, 415
Honestly significant difference (HSD) statistic,

130, 163; post hoc analysis, 164
Huynh-Feldt, 209, 211
Hypothesis significance testing (NHST), 36�37
Hypothesis-testing process, 29�38; defined, 29;

steps in, 28�37

I
IBM SPSS 20 program, 3, 77�98; age variable,

84; Align column, 82; AMOS (Analysis of
Moment Structures), 104; basic analyses,
examples of, 87�96; Columns column, 82;
counconfid variable, 85, 97; data, entering,
86�87; Data View screen, 79�80, 80,
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86�87; Data View spreadsheet, 157�158;
Data View tab, 86; dealdiff variable, 85, 89;
Decimals column, 81�82; ethn variable, 84;
ethnicother variable, 84�85; gender variable,
84; initial screen, 79; Label column, 82;
Measure column, 82; micskill variable, 85;
Missing Values column, 82; Missing Values
program, 103�105; modifying data,
procedures, examples of, 96�97; returndate
variable, 83; Role column, 82�83;
spconfidence variable, 97; sqcounconfid variable,
97; start-up procedures, 78; status variable, 83;
Type column, 81; Values column, 82; Variable
View, 80�81; Variable View screen, 80, 86;
Width column, 81

Impute, 104, 105�107, 110
Inclusion criteria, 144
Independence of observations, 134, 157
Independent cells, 234
Independent t-test, 23, 25�26, 89
Independent variables (IVs), 30�31, 54, 131, 144,

154, 162�163, 172�174, 445; adolescent
depression treatment program study, 131;
active, 4; cocaine abusers in treatment study,
232�233; weight loss treatment with support
partners study, 185�186

Inferential probability statements, 19
Inferential statistical applications of the normal

distribution, 18�26; alpha level, 20;
alternative hypothesis (Ha), 19; central limit
theorem, 19; critical value, 20; dependent
t-test, 23�25; independent t-test, 25�26; null
hypothesis, 19; one-sample t-test (student’s
t-test), 21�23; parameters, 19; sampling
distribution of mean, 19; sampling error, 19;
standard error of the mean, 20; two-tailed
test, 20

Inferential statistics, defined, 18�19
Inflated Type I error risk, 371
Interaction effects, 235, 278
Internal validity, 59�61
Interpersonal therapy (IPT), 132

J
Journal of Counseling Psychology

(Pace/Dixon), 460

K
Kolmogorov-Smirnov test with Lilliefors

correction, 114�115
Kruskal-Wallis (K-W) ANOVA, 70�71, 369;

with post hoc analysis, 346
Kurtosis, 109�110, 113, 150�151; defined,

151; screening, 113�114

L
Leptokurtic, 110, 113�114, 118, 151
Levene’s statistic, 156
Levene’s test, 109, 115�118, 124, 126, 155,

367�368; cocaine abusers in treatment
study, 261

Levene’s Test of Equality of Error Variances
(table), 118, 124, 126, 266, 321

Levene’s test of homogeneity of variance, 124,
155�156; 367�368

Likert-type scales, 5�6
Linear trend, 214; at point, 105
Linearity, of residuals, 415
Log10 transformation, 119, 121�126;

histograms of the dependent variable by
condition groups after, 122; Levene’s test of
homogeneity of variance after, 124; normal
Q-Q plots after, 125; one-way ANOVA results
before, 120; Shapiro-Wilk statistics after, 124;
skewness/kurtosis values after, 123

Lowe-Strong, 346

M
MAAS (Mindfulness Attention and Awareness

Scale), 100
Magnitude of treatment effect—post hoc effect

size, 162�163
Mahalanobis distance values, 409, 411
Main effects, 235
Mann-Whitney U (MWU): statistics, 346;

test, 71
Matching participants, 58
Mauchly’s test of sphericity, 209
Maximizing experimental variance, 54
MaxMinCon, 54
McGill Pain Questionnaire (MPQ), 346�347
Mean, 7�8
Mean deviation scores, 7
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Mean square error (MSE), 167�169
Mean square treatment (MST), 167
Means, cocaine abusers in treatment study,

249�250
Measurement: error of, 56�57; imprecision in,

55�57; sampling error, 55�56
Measurement reliability, and random error, 57
Measures of central tendency, 6�8; mean, 7�8;

median, 7; mode, 7
Measures of variability (dispersion) of scores, 8
Median, 7
Mesokurtic, 110, 151
Mindfulness Attention and Awareness Scale

(MAAS), 100
Minimizing error variance, 54
Missing completely at random (MCAR), 103
Missing data: analysis, 145�146; defined, 103;

deletion of cases/variables, 104; handling, 104;
identifying/dealing with, 103�106; to leaving
cases with large number of, 104; regression
analysis, 104�105; replacing missing values
with a mean, 104; reporting analyses, 105

Missing data analysis, cocaine abusers in
treatment study, 249�250

Missing not at random (MNAR), 103
Missing values, replacing with a mean, 104
Mixed-subjects ANOVA statistical design, 187;

cocaine abusers in treatment study, 235
MNAR missing data, 103
Mode, 7
Mozart effect, 440�441, 455, 457�460
μ (mu), 31
Multicollinearity: assessment of, 414�415;

defined, 413
Multifactor, defined, 69
Multifactor ANOVA (factorial ANOVA),

69�70, 134
Multiple correlation (R), 412
Multivariate correlation methods, using multiple

regression analysis, 401�438
Multiple linear regression, 66
Multiple regression analysis, 73�74; bivariate/

multivariate correlation methods using,
401�438

Multiple relationships, 66, 403
Multiple sclerosis (MS), defined, 346

Multiple sclerosis (MS) study, 346; accuracy of
data entry, 355; alpha (α), selecting, 351;
alternative hypothesis (Ha), 349�350;
appropriate statistic/sampling distribution,
choosing, 354�355; assessing for univariate
outliers IBM SPP commands, 356; electric
simulation condition, descriptive statistics of
pain improvement by, 358; Friedman’s rank
test, 382�387; Friedman’s rank test formula
calculations, 395�396; homogeneity of
variance, 367�368; Jones and Tukey method
of possible conclusions, 350; K-W-MWU
data, 357�358; Kruskal-Wallis (K-W)
ANOVA results, 369�370; Kruskal-Wallis
(K-W) ANOVA with post hoc analysis, 346;
Kruskal-Wallis one-way analysis of variance of
the omnibus H0, 369; kurtosis assessment,
362; Levene’s test of homogeneity of variance,
367�368; magnitude of treatment effect—
post hoc effect size, 389�394; make decision
regarding H0 and interpret post hoc effect
sizes, 370�382; Mann-Whitney U (MWU)
statistics, 346; McGill Pain Questionnaire
(MPQ), 346�347; means, 356; missing data
analysis, 355; nonparametric research problem
two, 382�398; nonparametric statistics, 346,
348; nonpharmacological methods to manage
pain, 346; normal Q-Q plots analysis,
365�367; normality evidence, summary of,
365; null hypothesis (H0), establishing, 350;
omnibus research question (RQ), 349;
pain improvement by electric simulation
condition, 359; a priori power analysis,
351�354; research design, 347�348; reset
split file command, 359; risk level of rejecting
the true (H0), 350�354; Shapiro-Wilk (S-W)
statistic assessment, 363�365; skewness
assessment, 360; skewness/kurtosis/standard
error values by group, 361�362; skewness
z-scores by condition groups, 362; standard
deviations, 356; study data diagnostics,
355�368; study variables, 346�347;
transcutaneous electrical nerve stimulation
(TENS), 346; underlying assumptions,
assessing for, 359�360; underlying
assumptions findings, summary of, 368;
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variances, 356; Wilcoxon’s matched-pairs
signed-ranks test, 382�389, 396�397

Multivariate ANOVA, 134
Multivariate correlation methods, using multiple

regression analysis, 401�438
Multivariate outliers, 107�108, 410�412

N
National Multiple Sclerosis Society, 346
Negative side, 17
Negatively skewed, 110
Nil null hypothesis, 32
No-treatment control condition, 133
No-treatment waiting-list control, 132
Nominal scale, 82
Nominal-scaled variables, 83
Nondirectional, 19; alternative hypothesis as, 22
Nonequivalent no-treatment control group

time-series design, 66
Nonparametric statistics, 348; as alternatives to

parametric counterparts, 346
Normal distribution, 14�26, 15�17; abscissa,

17; characteristics of, 15�17; defined, 14�15;
descriptive statistical application so, 17�18;
inferential statistical application so, 18�26;
negative side, 17; peak, 15; positive side, 17; of
residuals, 415; shoulders, 15; in standardized
scores, 16; tails, 15

Normal probability plot (Q-Q plot), 114�115,
117; after log10 transformation, 125; assessing
normality of control condition scores, 117;
assessing normality of treatment condition
scores, 116; cocaine abusers in treatment
study, 256, 258�259

Normality, 108�109, 114, 134, 151�154,
176�177; assessing normal Q-Q plots for,
114�115

Normality IBM SPSS commands, 148�149
Null hypothesis (H0), 19, 32; cocaine abusers in

treatment study, 240�241; doctoral student
dissertation study, 406; drug treatment
program study, 302; establishing (H0), 137;
inferential statistical application so, 19;
multiple sclerosis (MS) study, 350; statistical
testing process, 40; weight loss treatment with
support partners, 191

Null hypothesis significance testing (NHST)
process, 36�37

Nullification, 32

O
Observed score, 56
Omega-squared (ω2), 47, 173�174; cocaine

abusers in treatment study, 285�287
Omnibus research question (RQ): cocaine

abusers in treatment study, 237�238; doctoral
student dissertation study, 405; drug treatment
program study, 301; multiple sclerosis (MS)
study, 349; stating, 135�136; weight loss
treatment with support partners study,
186�189

One-sample t-test (student’s t-test), 21�23
One-way, defined, 69
One-way analysis of variance (ANOVA), 67�69,

130, 133�135; IBM SPSS commands,
159�160; Kruskal-Wallis, 70�71; results,
160�162

One-way analysis of variance (ANOVA) results:
for log10 transformed data, 126;
nontransformed, 119; and transformed
screening, 119�128

Operational definition (OD), 5, 54, 131�132
Ordinal scale, 82
Ordinate, 10, 17
Orthogonal cells, 234
Outliers, 145, 153, 176

P
Paired-sample t-test, 23
Parameters, 19; parameter statistics, 35
Partial-blind procedure, 59
Partial eta-squared (η2): cocaine abusers in

treatment study, 284�285; use of term, 162
Peak, 15
Pearson’s product-moment bivariate correlation

coefficient, 46
Pearson’s product-moment correlation

coefficient, 73, 423
Percentage of shared variance, 412
Percentage of unexplained variance, 412
Percentile rank, 17
Platykurtic, 110, 151
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Population mean, drug treatment program study,
301�302

Positive side, 17
Positively skewed, 109�110
Post hoc effect sizes, cocaine abusers in treatment

study, 284�287
Post hoc multiple comparisons of means:

adolescent depression treatment program
study, 163�165; weight loss treatment with
support partners, 212�213

Post hoc power, 44, 160, 163; cocaine abusers in
treatment study, 273; drug treatment program
study, 325; weight loss treatment with support
partners study, 216

Power, 138
Power analysis, maximizing hypothesis decisions

using, 39�52
Predictor variable (PV), 5, 31, 66, 403
Priority power analysis, 33�34
Propensity scores, 64�65
Psychotherapeutic treatment, 63
Purposive sampling, 56; of typical instances, 144

Q
Q-Q (quantile-quantile) plot, 13, 15
Quadratic trend, 214
Quantitative literature and research, See also

Research Interpretation for Consumers; how
study relates to previous research, 441;
interpretation of an article, 440�451; research
questions, identifying, 451�460; significance
of study, 441; theme of study, identifying,
440; understanding, 439�460

Quantitative research, knowledge of, 4
Quartic trend, 214
Quasi-experimental designs, 64�65, 71
Quasi-experimental research, 56

R
R-squared change value, 420
R-squared (R2) value, 418
R2, 46
r2, 46
Random assignments, 56; 58
Random error, 56; and measurement

reliability, 57

Random sampling, 56
Randomized posttest-only control group

design, 133
Randomly assigned, 145
Range of scores, 8
Redundancy of information between

variables, 413
Regression analysis, 104�105, 300; analysis of

covariance (ANCOVA), 298; missing data,
104�105; multiple, 73�74

Regression sum of squares, 420
Repeated measures, 69
Repeated-measures ANOVA (RM-ANOVA),

134, 184; a priori value for correlation between
repeated measures, 193�194; repeated-
treatment design using, 183�230; using to
test the null hypothesis, 195

Repeated-treatment design, using a repeated-
measures analysis of variance, 183�230

Repeating analyses, 105
Replacing missing values with a mean, 104
Replication studies, 37
Research design, 54; adolescent depression

treatment program study, 133�135; cocaine
abusers in treatment study, 233�237; drug
treatment program study, 300;multiple sclerosis
(MS) study, 347�348; weight loss treatment
with support partners study, 186�189

Research Interpretation for Consumers,
440, 442�449, 460; basic research design,
446�447; conclusions and interpretations,
448�449; data analysis, 447�448; data
collection, 447, 450�451; dependent variables
(DV), 445; extraneous variables (EV), 445;
follow single question all the way through,
443�444; hypotheses, 444�445;
independent variables (IV), 445; initial
exposure to research study, 442�449;
operational definition (OD), 446; participants,
449�450; population under study, 446;
presentation of results, 448; research methods,
450; research questions, 443; research setting,
449�450; theories undergirding the study,
449; variables, 445

Research problem: cocaine abusers in treatment
study, 231; doctoral student dissertation study,

bindex 18 June 2012; 21:9:25

INDEX � 473



402; drug treatment program study,
298�299; multiple sclerosis (MS) study,
382�398; weight loss treatment with support
partners study, 184�185

Residual sum of squares, 420
Residuals, 13�14; assessment of normality,

linearity, and homoscedasticity of, 415�417;
defined, 415

returndate variable, 83
Rival hypotheses, 64

S
Sample mean, 302
Sample variances to be approximately equal, 108
Sampling distribution, 34; of mean, 19
Sampling error, 19, 55�56; random sampling,

56; standard error of the mean, 55
Scale, 82
Scatter plot, 93�94
Scientist Practitioner Inventory (SPI), 402�403
Scientist Scale of the Scientist Practitioner

Inventory (SPI), 67
Self-Compassion Scale (SCS), 23
Sequential MRA (hierarchical MRA), 404,

417�423
Shapiro-Wilk (S-W) statistics, 151�152; after

log10 transformation, 124; cocaine abusers in
treatment study, 255, 257; by condition
group, 152

Shapiro-Wilk (S-W) test, 114
Shoulders, 15
Sig. F change, 420
Simple effects analysis, 235; cocaine abusers in

treatment study, 268�271
Simple linear regression, 66
Single-blind procedure, 58
Singularity: assessment of, 414�415;

defined, 413
Skewness, 109�110, 113; cocaine abusers in

treatment study, 255; screening, 110�111;
values, 111�112

Slope, 317�318
spconfidence variable, 97
Sphericity, 196, 208�209; Mauchly’s test

of, 209
Sphericity assumed, 216

Spreadsheet, 78
SPSS Data View spreadsheet, 157
sqcounconfid variable, 97
Standard care plus contingency management

condition, 302
Standard deviation: cocaine abusers in treatment

study, 249�250, of the sample, 9
Standard error: of the estimate (SEE), 418; of the

mean, 20, 55
Standard MRA (simultaneous MRA), 404
Standardized beta coefficient (beta weight)

(β), 421
Standardized differences effect sizes, 45, 47
Statistical designs, 54, 61
Statistical nullification, 33
Statistical software, 2�3
Statistical techniques, learned within the context

of research, 4
Statistics calculators, 18
Strength of correlation coefficient, 412
Study data: diagnosing for inaccuracies/

assumptions, 99�128; erroneous data entries,
detecting, 100�103; histograms, 110;
kurtosis, 109�110; missing data, identifying/
dealing with, 103�106; multivariate outliers,
107�108; purposes of, 145; research example,
100�127, 100�128; skewness, 109�110;
univariate assumptions, screening and making
decisions about, 108�109; univariate
outliers, 106

Study sample, cocaine abusers in treatment
study, 289

Study variables. cocaine abusers in treatment
study, 231�232

Substance abuse treatment program study,
See Drug treatment program study

Sum of squares, 8; error, 46
Suspending judgment, 32
Symmetry, 12; compound, 196
Systematic error, 56�57

T
t critical value, 22�23
t-distribution, 21�22
T-scores, 17
t-statistic, 421
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Tails, 15
TENS, defined, 346
Tests of Between-Subjects Effects, 119
Tests of Within-Subjects Effects, 216
THIS MESS, defined, 59
Total sum of squares, 8, 420
Transcutaneous electrical nerve stimulation

(TENS), 346
Treatment: adherence, 55; condition, 233;

delivery, 55; fidelity, 54�55; integrity,
54�55; receipt, 55; retention, 233;
status, 233

Trimmed means, 108
Triple-blind procedure, 59
True score, 56
Tukey honestly significant difference (HSD)

statistic, 130, 163, 164
Two-group posttest-only randomized

experimental design, 301; with covariate, 301
Two-tailed test, 20
Type column, IBM SPSS 20 program, 81
Type I error (alpha [α] error), 40, 138; avoiding

making, illustration of, 41�43
Type II error (beta [β] error), 33, 40, 138;

avoiding making, illustration of, 43�44

U
Unbiased estimate, 9
Unimodal, 7
Univariate assumptions, screening and making

decisions about, 108�109
Univariate outliers, 106
Univariate parametric assumptions, 145
Unstandardized beta coefficient (B), 421

V
Values column, IBM SPSS 20 program, 82
Variable View screen, IBM SPSS 20 program,

80�81, 86
Variables, 96, See also Dependent variables

(DVs); Extraneous variables (EVs);
Independent variables (IVs); classification, 5;
composite mean variable of two variables,
creating, 95�96; composite summed variable
of two variables, creating, 93�94; criterion
variable (CV), 5; operational definition (OD),

5; predictor variable (PV), 5; scales of
measurement, 5�6

Variance, 298; analysis of variance (ANOVA),
62�63, 65; covariances, 196, 208�209;
extraneous, controlling, 54; homogeneity of,
134, 154�156; Levene’s Test of Equality of
Error Variances (table), 118, 124, 126, 266,
321; repeated-measures analysis of, 205

Variance-accounted-for effect sizes, 45, 47
Variance ratio analysis, 116�117
Variance of the sample (s2), 8�9
Visual representations of a dataset, 10�14;

abscissa, 10; bar chart, 10; frequency
distribution, 10; histogram, 12�13; ordinate,
10; x-axis, 10; y-axis, 10

W
Wechsler Adult Intelligence Scale (WAIS-IV),

19, 21
Weight, as ratio-scaled variable, 5
Weight gain among women with bulimia study,

31�37; alpha level, 33; beta error (Type II
error), 33; data diagnostic procedures, 35; data
screening process, 34�35; directional
alternative hypothesis, 31�32; narrative
nondirectional alternative hypothesis, 31; null
hypothesis (H0), 32�33, 35�36; population
mean, 31; a priori power analysis, 33�34;
sampling distribution, 34; statistical
significance probability, 35�36

Weight loss, operational definition (OD), 186
Weight loss treatment with support partners

study, 184�185, 230; Addsupport condition,
198, 199, 204�205, 216; Addsupport Q-Q
plot, 205; alternative hypothesis (Ha),
190�191; assessing the dependent variable for
underlying assumptions, 199; assessing the
univariate outliers SPSS commands, 197;
behavioral weight control treatment (BWCT),
185; confidence intervals of mean differences,
217; Continuesupport condition, 199, 216;
data diagnostics, studying, 196�205; data
entry, accuracy of, 196; dependent variable
(weight loss), 186; descriptive statistics of
weight loss by condition group, 197; Fisher’s
protected least significant differences (PLSD),
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222�226; formula calculations of study
results, 218�228; histograms of weight loss by
weight loss intervention, 200�201;
independent variable (weight loss
intervention), 185�186; kurtosis z-scores by
condition group, 204; magnitude of treatment
effect—post hoc effect size, 197, 216; missing
data analysis, 197; normal evidence, summary
of, 205; normal Q-Q plots of weight loss by
weight loss intervention conditions, 205�207;
null hypothesis (H0), establishing, 191;
omnibus narrative, null hypothesis (H0), 191;
omnibus research question (RQ), 186�189;
post hoc effect size—partial eta-squared,
221�222; post hoc multiple comparisons of
means, 212�213; post hoc paired-means
comparisons, 222�227; post hoc power, 216;
power analysis using G*Power, 193; a priori
power analysis, 192�193; Removesupport
condition, 199; repeated-measures analysis of
variance, 205; research design, 186�189;
research problem, 184�185; risk level of
rejecting the true (H0), 192; RM-ANOVA
results, 210�212; RM-ANOVA summary
table specifications, 218, 221; sample
selection/assignment, 196; selecting alpha (α)
considering type I and Type II errors, 192;
Shapiro-Wilk (S-W) statistics by condition
group, 204; skewness/kurtosis/standard error
values by condition group, 202�203;

skewness z-scores by condition group, 203;
sphericity, 208�209; standard deviations,
197; study results, 227�228; study variables,
185�186; sum of squares calculation, 220;
trend analysis, 213�215; trends of weight loss
means across the condition groups, 215; using
RM-ANOVA to test the null hypothesis, 195;
variances, 197; Withsupport condition, 198,
199, 216; ZAddsupport condition, 198;
ZContinuesupport condition, 198;
ZRemovesupport condition, 198; ZWithsupport
condition, 198

Weighted by sample size, 140
Weschler Adult Intelligence Scale—IV, 19�20
White Bear Suppression Inventory (WBSI), 25
Width column, IBM SPSS 20 program, 81
Wilcoxon’s matched-pairs signed-ranks test,

72�73, 382�389, 396�397
Within-group design, 69
Within-subjects ANOVA design, 186�187;

cocaine abusers in treatment study, 235

X
x-axis, 10, 17

Y
y-axis, 10, 17

Z
z-scores, 17�18
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